Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054910, 2023.
Inspire Record 2075412 DOI 10.17182/hepdata.139082

The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.

0 data tables match query

Version 2
Search for a new Z' gauge boson in $4\mu$ events with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 090, 2023.
Inspire Record 2625676 DOI 10.17182/hepdata.130818

This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.

0 data tables match query

A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

0 data tables match query

Measurements of the suppression and correlations of dijets in Pb+Pb collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054908, 2023.
Inspire Record 2075431 DOI 10.17182/hepdata.145875

Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV, measurements of the leading dijet transverse momentum ($p_{\mathrm{T}}$) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet $p_{\mathrm{T}}$ are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb$^{-1}$ of pp data collected in 2017 and 2.2 nb$^{-1}$ of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet $p_{\mathrm{T}}$ distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet $p_{\mathrm{T}}$ greater than 100 GeV. Measurements of the dijet-yield-normalized $x_{\mathrm{J}}$ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely-normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with $p_{\mathrm{T}}$ between 100 and 316 GeV for all centralities in Pb+Pb collisions.

0 data tables match query

Measurement of beauty-strange meson production in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV via non-prompt $\mathrm{D_s}^{+}$ mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137561, 2023.
Inspire Record 2071181 DOI 10.17182/hepdata.135986

The production yields of non-prompt $\mathrm{D_s}^{+}$ mesons, namely $\mathrm{D_s}^{+}$ mesons from beauty-hadron decays, were measured for the first time as a function of the transverse momentum ($p_{\rm T}$) at midrapidity ($|y|<0.5$) in central and semi-central Pb$-$Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE experiment at the LHC. The $\mathrm{D_s}^{+}$ mesons and their charge conjugates were reconstructed from the hadronic decay channel $\mathrm{D_s}^{+} \to \phi\pi^+$, with $\phi \to {\rm K}^-{\rm K}^+$, in the $4 < p_{\rm T}<36$ GeV/$c$ and $2 < p_{\rm T}<24$ GeV/$c$ intervals for the 0$-$10% and 30$-$50% centrality classes, respectively. The measured yields of non-prompt $\mathrm{D_s}^{+}$ mesons are compared to those of prompt $\mathrm{D_s}^{+}$ and non-prompt $\mathrm{D^0}$ mesons by calculating the ratios of the production yields in Pb$-$Pb collisions and the nuclear modification factor $R_\mathrm{AA}$. The ratio between the $R_\mathrm{AA}$ of non-prompt $\mathrm{D_s}^{+}$ and prompt $\mathrm{D_s}^{+}$ mesons, and that between the $R_\mathrm{AA}$ of non-prompt $\mathrm{D_s}^{+}$ and non-prompt $\mathrm{D^0}$ mesons in central Pb$-$Pb collisions are found to be on average higher than unity in the $4< p_{\rm T}<12$ GeV/$c$ interval with a statistical significance of about $1.6\,\sigma$ and $1.7\,\sigma$, respectively. The measured $R_\mathrm{AA}$ ratios are compared with the predictions of theoretical models of heavy-quark transport in a hydrodynamically expanding QGP that incorporate hadronisation via quark recombination.

0 data tables match query

Measurement of beauty production via non-prompt charm hadrons in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
CERN-EP-2024-193, 2024.
Inspire Record 2808020 DOI 10.17182/hepdata.155514

The production cross sections of $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton$-$lead (p$-$Pb) collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. Nuclear modification factors ($R_{\mathrm {pPb}}$) of non-prompt $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ are calculated as a function of the transverse momentum ($p_{\mathrm T}$) to investigate the modification of the momentum spectra measured in p$-$Pb collisions with respect to those measured in proton$-$proton (pp) collisions at the same energy. The $R_{\mathrm {pPb}}$ measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant $p_{\mathrm T}$ dependence. The $p_{\mathrm T}$-integrated cross sections and $p_{\mathrm T}$-integrated $R_{\mathrm {pPb}}$ of non-prompt $\mathrm {D^0}$ and $\mathrm {D^+}$ mesons are also computed by extrapolating the visible cross sections down to $p_{\mathrm T}$ = 0. The non-prompt D-meson $R_{\mathrm {pPb}}$ integrated over $p_{\mathrm T}$ is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt $\mathrm {\Lambda_{c}^{+}/D^{0}}$ and $\mathrm{D^+/D^0}$ production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of $p_{\mathrm T}$ display a similar trend to that measured for charm hadrons in the same collision system.

0 data tables match query

Version 2
Towards the understanding of the genuine three-body interaction for p$-$p$-$p and p$-$p$-\Lambda$

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.A 59 (2023) 145, 2023.
Inspire Record 2092560 DOI 10.17182/hepdata.134041

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle correlation functions carried out for pp collisions at $\sqrt{s} = 13$ TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

0 data tables match query

First measurement of A = 4 (anti)hypernuclei at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2024-265, 2024.
Inspire Record 2842103 DOI 10.17182/hepdata.158317

In this Letter, the first evidence of the ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number $A=4$, specifically (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$. In addition, the antiparticle-to-particle ratios for both hypernuclei (${}^4_{\bar{\Lambda}}\overline{\mathrm{H}}$ / ${}^4_{\Lambda}\mathrm{H}$~and ${}^4_{\bar{\Lambda}}\overline{\mathrm{He}}$ / ${}^4_{\Lambda}\mathrm{He}$) are shown, which are sensitive to the baryochemical potential of the strongly-interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb--Pb collisions, collected during the 2018 LHC data-taking at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The yields measured for the average of the charge-conjugated states are found to be $[0.78 \; \pm \; 0.19 \; \mathrm{(stat.)} \; \pm \; 0.17 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{H}$ and $[1.08 \; \pm \; 0.34 \; \mathrm{(stat.)} \; \pm \; 0.20 \; \mathrm{(syst.)}] \times 10^{-6}$ for the (anti)${}^4_{\Lambda}\mathrm{He}$, and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3$\sigma$ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6$\sigma$ with the present measurements. Additionally, the measured (anti)${}^4_{\Lambda}\mathrm{H}$ and (anti)${}^4_{\Lambda}\mathrm{He}$ masses are compatible with the world-average values within the uncertainties.

0 data tables match query

Light-flavor particle production in high-multiplicity pp collisions at $\mathbf{\sqrt{\textit{s}} = 13}$ TeV as a function of transverse spherocity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 184, 2024.
Inspire Record 2711421 DOI 10.17182/hepdata.153642

Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.

0 data tables match query

Multiplicity-dependent production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 317, 2024.
Inspire Record 2692207 DOI 10.17182/hepdata.153244

The production yields of the $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ resonances are measured in pp collisions at $\sqrt{s}=13$ TeV with ALICE. The measurements are performed as a function of the charged-particle multiplicity $\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$, which is related to the energy density produced in the collision. The results include transverse momentum ($p_{\rm T}$) distributions, $p_{\rm T}$-integrated yields, mean transverse momenta of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$, as well as ratios of the $p_{\rm T}$-integrated resonance yields relative to yields of other hadron species. The $\Sigma(1385)^{\pm}/\pi^{\pm}$ and $\Xi(1530)^{0}/\pi^{\pm}$ yield ratios are consistent with the trend of the enhancement of strangeness production from low to high multiplicity pp collisions, which was previously observed for strange and multi-strange baryons. The yield ratio between the measured resonances and the long-lived baryons with the same strangeness content exhibits a hint of a mild increasing trend at low multiplicity, despite too large uncertainties to exclude the flat behaviour. The results are compared with predictions from models such as EPOS-LHC and PYTHIA 8 with Rope shoving. The latter provides the best description of the multiplicity dependence of the $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ production in pp collisions at $\sqrt{s}=13$ TeV.

0 data tables match query