Measurements are reported of p̄p total cross sections from 388 to 599 MeV/ c in small momentum steps. Statistical errors are typically ±0.4%and the normalisation uncertainty is ±0.7%. There is no evidence for the “S-meson”.
DATA TAKEN WITH 8.33 CM LH2 TARGET.
DATA TAKEN WITH 1.17 CM LH2 TARGET.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.
The total v μ N charged current cross section in the energy interval 10–50 GeV is unfolded from 15' bubble chamber antineutrino data. The method is to isolate the quasielastic events and determine their relative contribution to the overall charged current sample. The scale parameter is found to be (0.29 ± 0.03) × 10 −38 cm 2 GeV −1 . Relevance of the method for neutrino oscillation studies is discussed.
Measured charged current total cross section.
Measured charged current total cross section.
Measured charged current total cross section.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
We report on results of η-electroproduction in the resonance region at momentum transfers ofQ2=2 GeV2 and 3 GeV2. The differential cross sections obtained in the region of the second nucleon resonance strongly support the dominance of theS11(1535) in this channel. The total transverse virtual photoproduction cross section of theS11(1535) shows a flatQ2-dependence ∼e−0.39·Q2. Comparison with the total resonant γvp cross section in the second resonance region aroundW=1.5 GeV shows that theD13(1520) production decreases much faster (∼e−1.6·Q2). The data are not compatible with the simple harmonic oscillator quark model with spin and orbit excitation of a quark only.
No description provided.
No description provided.
No description provided.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
None
SEARCH FOR F MESON IN THE INCLUSIVE ETA SPECTRUM.
UPPER LIMIT (95 PCT CL) OF F PRODUCTION FROM THE INCLUSIVE GAMMA SPECTRUM. MASS OF F MESON TAKEN AS 2030 MEV.
UPPER LIMIT (95 PCT CL) OF F PRODUCTION FROM THE INCLUSIVE GAMMA SPECTRUM. MASS OF F MESON TAKEN AS 2030 MEV.
Some experimental properties of the charged hadronic fragments are compared for νp, νn,\(\bar vp\) and\(\bar vn\) interactions: multiplicities of forward and backward going particles,xF distributions for pions, fragmentation functions and theirQ2 andW2 dependence. The results are compared with the predictions of the Lund fragmentation model.
No description provided.
Events with a single highpT charged particle were recorded with the Split-Field-Magnet Detector in proton-proton collisions at the CERN-ISR. In the jet opposite to the trigger region the densities of photons and reconstructed neutral pions were measured with a liquid argon shower counter. Scaled momentum distributions of these particles are given and compared with those of charged pions. The spectra of charged and neutral pions coincide. The production cross-section of neutrals in the away jet shows no dependence on the flavour of the trigger particle.
No description provided.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.