Using a primary beam of 40 Ar at ∼1A GeV impinging on a Be target, the production cross-sections of light neutron-rich fragments from projectile fragmentation were measured at the projectile-fragment separator FRS at GSI. The experimental cross-sections were obtained for isotopes of the elements B to F both close to stability and near the neutron drip line. These data are compared to the results of the empirical parametrization EPAX. We also compare the results to those measured previously at LBL. As an additional result, the particle instability of 26 O has been confirmed.
No description provided.
No description provided.
No description provided.
The mean multiplicities of π− mesons and protons originating from pC, dC, αC, and CC interactions at a momentum of p=4.2 GeV/c per projectile nucleon and the distributions of these particles in kinematical variables are presented. These experimental distributions are compared with the corresponding predictions obtained on the basis of the FRITIOF model. It is shown that the FRITIOF version used in the present analysis describes satisfactorily our experimental data.
No description provided.
No description provided.
No description provided.
Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.
No description provided.
No description provided.
No description provided.
None
The Dalitz plot parameters G, H, and K are used in the standard parameterization of the matrix element squared (see PDG): M**2 = 1 + G*X + H*X**2 + K*Y**2,where X = (s3-s0)/m(PI)**2 and Y = (s1-s2)/m(PI)**2, s1 = (pK - pPI0)**2, s2 = (pK - pPI0)**2, s3 = (pK - pPI+)**2, s0 = (s1+s2+s3)/3.
We present the results of a search for the production of light elements in p¯p collisions at the Fermilab Tevatron collider. Momentum, time of flight, and dE/dx measurements are used to distinguish nuclei from elementary particles. A production ratio for deuterium to hydrogen is calculated and compared to the primordial value of the big bang model. Some evidence for tritium is found and none for helium isotopes.
Invariant cross section and cross section per unit rapidity interval for deuterium and anti-deuterium production.
Independent measurement of the proton or anti-proton production cross section (K Gulbrandsen, Senior Thesis, University of Wisconsin-Madison 1998).
Measured cross sections for tritium production.
We report on a measurement of the branching ratio of the rare decay ω→ηγ relative to the well known decay ω→π0γ. The ω’s are produced in pp¯→ηω and pp¯→π0ω. Eigenstate mixing and interference effects of the ω and ρ0 are taken into account, as well as coherent interference with the background. We find evidence for the non-resonant annihilation channel B(pp¯→ηηγ)=(3.5±1.3)×10−5 and limit the value of B(ω→ηγ) to the range of (0.7to5.5)×10−4 depending on the degree of coherence with the background.
No description provided.
A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
A first measurement of the cross section of the process e+e- -> Z gamma gamma is reported using a total integrated luminosity of 231 pb^-1 collected with the L3 detector at centre-of-mass energies of 182.7 GeV and 188.7 GeV. By selecting hadronic events with two isolated photons the e+e- -> Z gamma gamma cross section is measured to be 0.49 +0.20 -0.17 +/- 0.04 pb at 182.7 GeV and 0.47 +/- 0.10 +/- 0.04 pb at 188.7 GeV. The measurements are consistent with Standard Model expectations. Limits on Quartic Gauge Boson Couplings a_0/Lambda^2 and a_c/Lambda^2 of -0.009 GeV^-2 < a_0/Lambda^2 < 0.008 GeV^-2 and -0.007 GeV^-2 < a_c/Lambda^2 < 0.013 GeV^-2 are derived at 95% confidence level.
The measured cross section for the hadronic decay of the Z0.
The cross sections scaled for the hadronic Z0 branching ratio.
Bhabha scattering data recorded at \sqrt{s}=189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are alpha^-1(-2.1 GeV^2) - alpha^-1(-6.25 GeV^2) = 0.78 +/- 0.26 alpha^-1(-12.25 GeV^2) - alpha^-1(-3434 GeV^2) = 3.80 +/- 1.29, in agreement with theoretical predictions.
No description provided.
Results extracted from the small angle Bhabha scattering sample at Z peak. Results contained total experimental uncertainty.
Results extracted from the large angle Bhabha scattering sample at sqrt(s) = 189 GeV. Results contained total experimental and theoretical uncertainty.
A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nu nubar), quark and lepton pairs, (q qbar l+l-, q qbar nu nubar) and the all-hadronic final state (q qbar q qbar) are considered. In all states with at least one Z boson decaying hadronically, q qbar and b bbar final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At sqrt(s) = 189 GeV the Z-pair cross section was measured to be 0.80 (+0.14-0.13, stat.) (+0.06-0.05, syst.) pb, consistent with the Standard Model prediction. At sqrt(s) = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZgamma and ZZZ couplings are derived.
Measured cross sections for Z0 pair production.