It is shown that the energy dependence of charge-exchange a2+ photoproduction (γp→na2+) agrees with a one-pion exchange mechanism. No evidence for the photoproduction of the a1+(1260) is observed. If the dynamics of a1 and a2 photoproduction are assumed to be the same, the absence of evidence for the a1 is shown to be consistent with either an extremely large a1 hadronic width or with an a1 of mass somewhat less than 1260 MeV.
No description provided.
Inelastic ρ0 photoproduction in the reaction γp→ρ0π+n is observed in the peripheral region |tγ,ρ0′|<0.12 GeV2. The data are consistent with the ρ0 production being due to a double peripheral mechanism which conserves s-channel helicity. The π+n produced in association with the ρ0 is also consistent with the same mechanism, although there is a distortion of the expected angular distributions in the π+n mass region of 1.3-1.5 GeV/c2.
No description provided.
From a 98000-photograph exposure of the BNL 80-in. deuterium-filled chamber to a 14.6-GeV/c p¯ beam we have extracted those events that fit the channel p¯n→p¯pπ−. The cross section for this channel is measured to be 730 ± 50 μb. The cross section for the reaction p¯n→Δ¯−−(1238)p is determined to be 130 ± 30 μb. Evidence for target dissociation is presented. A comparison with the reaction π−n→π−pπ− at the same energy indicates agreement with factorization.
No description provided.
The production of KS, Λ, Λ¯, and γ in π−p collisions at 147 GeV/c is analyzed. Cross sections, rapidity, Feynman-x, and pT2 distributions are presented and compared to charged-particle production. The energy dependence of multiplicities in π−p and pp collisions is shown. A new scaling form for the correlation of neutral- and charged-particle multiplicities is presented for compilations of πp and pp data.
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
New data from a 600 000 picture exposure of the BNL 31 inch hydrogen bubble chamber to a separated antiproton beam have been analyzed to try to determine if the π + π − π + π − or π + π − π + π − π 0 final states contribute any broad or narrow structure in the T(2190) region. The resonance channel fractions determined by maximum likelihood fits are all consistent with smooth behavior through the T-region and therefore there is no significant evidence that any of these resonance channels contributes to the broad bump in the total cross section. The errors on some of the fractions, however, limit the sensitivity to ∼ 0.5 mb for enhancements in these channels.
RESONANCE CHANNEL PERCENTAGES FROM FIT TO PI+ PI- PI+ PI- FINAL STATE.
RESONANCE CHANNEL PERCENTAGES FROM FIT TO PI+ PI- PI+ PI- PI0 FINAL STATE.
We report on a study of the reaction, $\gamma p \to p \pi^+\pi^+\pi^-\pi^-\pi^0$, at an incident photon energy of 19.3 GeV. The most significant feature of this reaction is $\Delta^{++}$ production which occurs with a cross section of $0.6\pm 0.1 \mu$b. An upper limit is set for the cross section for the reaction, $\gamma p \to \Delta^{++}b_1^-(1235)$, and a search is made for resonances decaying to $b_1^\pm\pi^\mp$.
No description provided.
Upper limit for DELTA(1232)++ B1(1235)- system photoproduction cross section.
A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D+ KK)=(N(Q=D+ KK)/N(Q=D+ K) - N(Q=D- KK)/N(Q=D- K))/(N(Q=D+ KK)/N(Q=D+ K) + N(Q=D- KK)/N(Q=D- K)).
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 KK)=(N(Q=D0 KK)/N(Q=D0 K) - N(Q=DBAR0 KK)/N(Q=DBAR0 K))/(N(Q=D0 KK)/N(Q=D0 K) + N(Q=DBAR0 KK)/N(Q=DBAR0 K)).
All N-values corrected by efficiencies obtained from Monte-Carlo simulations. The CP asymmetry can be written as: ACP=(eta(D)-eta(DBAR))/(eta(D)+eta(DBAR)), where eta(Q=D0 PIPI)=(N(Q=D0 PIPI) - N(Q=DBAR0 PIPI))/(N(Q=D0 PIPI) + N(Q=DBAR0 PIPI)).
Results for the Cabibbo suppressed semileptonic decays D 0 → π − e + ν and D 0 → π − μ + ν (charge conjugates are implied) are reported by Fermilab photoproduction experiment E687. We find 45.4 ± 13.3 events in the electron mode and 45.6 ± 11.8 in the muon mode. The relative branching ratio BR (D 0 →π − l + v) BR (D 0 →K − l + v) for the combined sample is measured to be 0.101 ± 0.020 (stat.) ± 0.003 (syst.) 14 .
CONST(C=V-CD and CONST(C=V-CS) are the Cabibbo-Kobayashi-Maskawa matrix elemets.
We report on the study of charm baryons decaying to Λ c + : Λ c ★+ (2625) → Λ c + π + π − , Λ c ★+ (2593) → Λ c + π + π − , Σ c 0 → Λ c + π − and Σ c ++ → Λ c + π + . We present a confirmation of the state Λ c ∗+ (2593) and determine its mass difference to be M ( Λ c ★+ (2593)) − M ( Λ c + ) = 309.2 ± 0.7 ± 0.3 MeV/ c 2 . We determine the lower limit on the resonant branching ratio to be BR (Λ c ★+ (2593) → Σ c π ± Λ c ★+ (2593) → Λ c + π + π − ) > 0.51 (90% c.l.). We also measure the mass differences M ( Σ c 0 ) − M ( Λ c + ) = 166.6±0.5±0.6 MeV/ c 2 and M ( Σ c ++ ) − M ( Λ c + ) = 167.6±0.6±0.6 MeV/ c 2 . Finally, we measure the relative photoproduction cross sections for Λ c ★+ and Σ c with respect to the (inclusive) photoproduction cross section for Λ c + .
No description provided.
We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.
Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.