Shadowing in the muon-xenon inelastic scattering cross-section at 490-GeV

The Fermilab E665 collaboration Adams, M.R. ; Aid, S. ; Anthony, P.L. ; et al.
Phys.Lett.B 287 (1992) 375-380, 1992.
Inspire Record 341389 DOI 10.17182/hepdata.29153

Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.

2 data tables

Xenon structure function parameterized as being equal to the DEUT structurefunction.

Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.


Shadowing in deep inelastic muon scattering from nuclear targets

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Phys.Lett.B 211 (1988) 493-499, 1988.
Inspire Record 262246 DOI 10.17182/hepdata.29908

Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003–0.1) and low Q 2 (0.3–3.2 GeV 2 ) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q 2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

4 data tables

VALUES OF Q**2 AT EACH POINT ARE:- 0.52,0.60,0.61,0.61,0.63,0.68,0.90.

VALUES OF Q**2 AT EACH POINT ARE:- 1.09,1.25,1.54,1.74,1.76,1.68,1.71, 2.29.

VALUES OF X AT EACH POINT ARE:- 0.009,0.011,0.010,0.010,0.010,0.011, 0.013,0.015.

More…

Measurement of the Ratios of Deep Inelastic Muon - Nucleus Cross-Sections on Various Nuclei Compared to Deuterium

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, Guenter ; et al.
Phys.Lett.B 202 (1988) 603-610, 1988.
Inspire Record 260668 DOI 10.17182/hepdata.29991

Results are presented on the ratios of the deep inelastic muon-nucleus cross sections for carbon, copper and tin nuclei to those measured on deuterium. The data confirm that the structure functions of the nucleon measured in nuclei are different from those measured on quasi-free nucleons in deuterium. The kinematic range of the data is such that 〈 Q 2 〉 ∼ 5 GeV 2 at x ∼ 0.03, increasing to 〈 Q 2 〉 ∼ 35 GeV 2 for x ∼ 0.65. The measured cross section ratios are less than unity for x ≲ 0.05 and for 0.25 ≲ x < 0.7. The decrease of the ratio below unity for low x becomes larger as A increases as might be expected from nuclear shadowing. However, this occurs at relatively large values of Q 2 (∼ 5 GeV 2 ) indicating that such shadowing is of patrionic origin.

3 data tables

Q**2= 5.1,7.8,11.4,14.4,17.3,20.2,24.1,29.8,33.6 GEV**2.

Q**2= 4.4,8.4,13.5,17.9,21.1,24.4,29.5,34.0,40.4 GEV**2.

Q**2= 4.0,7.7,11.1,14.6,17.1,19.8,24.8,32.4 GEV**2.


The A dependence of the nuclear structure function ratios

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 3-22, 1996.
Inspire Record 429851 DOI 10.17182/hepdata.32712

Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.

6 data tables

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.003 in the ratio.

More…

A Measurement of Nuclear Effects in Deep Inelastic Muon Scattering on Deuterium, Nitrogen and Iron Targets

The BCDMS collaboration Bari, G. ; Benvenuti, A.C. ; Bollini, D. ; et al.
Phys.Lett.B 163 (1985) 282, 1985.
Inspire Record 216817 DOI 10.17182/hepdata.30331

New data is presented on the ratios of structure functions F 2 ( x , Q 2 ) measured in deep inelastic muon scattering with deuterium, nitrogen, and iron targets. The existence of nuclear effects at large Q 2 is confirmed with improved systematic accuracy. The ratio F 2 Fe ( x ) F 2 D 2 ( x ) covers the range 0.20 ⩽ x ⩽ 0.70 and is in agreement with earlier measurements. The ratio F 2 N 2 ( x )/ F 2 D 2 ( x ) is measured over the range 0.08 ⩽ x ⩽ 0.70 and is compatible with unity below x = 0.3.

2 data tables

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 46-106,46-106,53-150,53-200,70-200,80-200 RESPECTIVELY.

VALUES OF Q2 CORRESPONDING TO THE X-BINS IN THIS TABLE ARE:- 26-40,26-61,30-80,30-106,30-106,30-150,30-200,35-200,46-200.


A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 441 (1995) 3-11, 1995.
Inspire Record 393377 DOI 10.17182/hepdata.32848

We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.

6 data tables

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

More…

The Q**2 dependence of the structure function ratio F2 Sn / F2 C and the difference R Sn - R C in deep inelastic muon scattering

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 23-39, 1996.
Inspire Record 429850 DOI 10.17182/hepdata.32717

The Q 2 dependence of the structure function ratio F 2 Sn / F 2 C for 0.01 < x < 0.75 and 1 < Q 2 < 140 GeV 2 is reported. For x < 0.1 the size of shadowing decreases with ln Q 2 and the maximum rate is about 0.04 at x = 0.01. The rate decreases with x and is compatible with zero for x ⩾ 0.1. The difference R Sn − R C , where R is the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, is also given. No dependence on x is seen and the average value is 0.040 ± 0.021 (stat.) ± 0.026 (syst.) at a mean Q 2 of 10 GeV 2 .

17 data tables

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

More…

Measurements of R(d) - R(p) and R(Ca) - R(C) in deep inelastic muon scattering

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Lett.B 294 (1992) 120-126, 1992.
Inspire Record 340582 DOI 10.17182/hepdata.29038

Results are presented on the difference in R , the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, for the deuteron and the proton. They are obtained by comparing the ratio of cross sections for the deep inelastic scattering of muons from deuterium and hydrogen targets at 90 and 280 GeV incident energy. The results cover the range x =0.01–0.30, at an average Q 2 of 9 GeV 2 . The measured difference R d - R p shows no significant x dependence and is compatible with zero, as well as with expectations from perturbative QCD. We use the same method to obtain the difference R Ca - R C from cross section ratios measured on carbon and calcium targets at 90 and 200 GeV incident energy.

4 data tables

No description provided.

Average overall x values.

No description provided.

More…

The Ratio of the Nucleon Structure Functions f2 (n) for Iron and Deuterium

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 123 (1983) 275-278, 1983.
Inspire Record 188925 DOI 10.17182/hepdata.30745

Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.

1 data table

RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.


A High Statistics Measurement of the Nucleon Structure Function F(2) (X,$Q^2$) From Deep Inelastic Muon - Carbon Scattering at High $Q^2$

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
Phys.Lett.B 195 (1987) 91-96, 1987.
Inspire Record 247013 DOI 10.17182/hepdata.30107

We present results from a high statistics study of the nucleon structure function F 2 ( x , Q 2 ) measured in deep inelastic scattering of muons on carbon in the kinematic range 0.25⩽ x ⩽0.80 and Q 2 ⩾25 GeV 2 . The analysis is based on 1.5×10 6 reconstructed events recorded at beam energies of 120, 200 and 280 GeV. R = σ L / σ T is found to be independent of x in the range 0.25⩽ x ⩽0.07 and 40 GeV 2 ⩽ Q 2 ⩽200 GeV 2 with a mean value R =0.015±0.013 ( stat ) ±0.026 (syst.).

19 data tables

R=SIG(L)/SIG(T).

No description provided.

No description provided.

More…