Showing 10 of 614 results
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.
Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
Observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
Expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
Observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{+}\tilde{\chi}_{1}^{-}$.
The analyses used in combination for each scenario to set limits in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_{1}^{-}$.
Observed upper limit on the signal cross section in fb for chargino--neutralino production decaying via W and Z bosons.
The analyses used in combination for each scenario to set limits in models of chargino--neutralino production decaying via W and Z bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed upper limit on the signal cross section in fb for chargino--neutralino production decaying via W and h bosons.
The analyses used in combination for each scenario to set limits in models of chargino--neutralino production decaying via W and h bosons.
Observed upper limit on the signal cross section in fb for higgsino GGM scenarios.
The analyses used in combination for each scenario to set limits in higgsino GGM scenarios.
A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.
SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.
SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.
Three searches for the direct production of $\tau$-sleptons or charginos and neutralinos in final states with at least two hadronically decaying $\tau$-leptons are presented. For chargino and neutralino production, decays via intermediate $\tau$-sleptons or $W$ and $h$ bosons are considered. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139\,$fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed and supersymmetric particle mass limits at 95% confidence level are obtained in simplified models. For direct production of $\tilde~{\chi}^+_1\tilde~{\chi}^-_1$, chargino masses are excluded up to 970 GeV, while $\tilde~{\chi}^{\pm}_1$ and $\tilde~{\chi}^0_2$ masses up to 1160 GeV (330 GeV) are excluded for $\tilde~{\chi}^{\pm}_1\tilde~{\chi}^0_2$/$\tilde~{\chi}^+_1\tilde~{\chi}^-_1$ production with subsequent decays via $\tau$-sleptons ($W$ and $h$ bosons). Masses of $\tau$-sleptons up to 500 GeV are excluded for mass degenerate $\tilde~{\tau}_{L,R}$ scenarios and up to 425 GeV for $\tilde~{\tau}_L$-only scenarios. Sensitivity to $\tilde~{\tau}_R$-only scenarios from the ATLAS experiment is presented here for the first time, with $\tilde~{\tau}_R$ masses excluded up to 350 GeV.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT1, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT2, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT3, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT4, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1C1-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1N2OS-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1N2SS-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate $Wh$ channel, showing the $m_{\mathrm{T}2}$ distribution in SR-Wh-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate $Wh$ channel, showing the $m_{\mathrm{Tsum}}$ distribution in SR-Wh-HM, before the selection on $m_{\mathrm{Tsum}}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the OS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the OS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the SS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the SS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the OS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the OS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the SS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the SS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{L}\tilde{\tau}_{L}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{R}\tilde{\tau}_{R}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{L}\tilde{\tau}_{L}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{R}\tilde{\tau}_{R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT1 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT1 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT2 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT2 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT3 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT3 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT4 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT4 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
Cutflow event yields of the direct stau production SRs in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying taus; be selected and matched by the asymmetric ditau trigger (with plateau cuts); have at least two medium taus of opposite sign and have $m_{\mathrm{T2}} > 30$ GeV. Cuts except the BDT score cuts are applied consecutively, while the BDT score cuts are applied one at a time.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$.
The acceptance $A$ of the Intermediate stau signal region SR-C1C1-LM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1C1-LM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1C1-HM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1C1-HM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2OS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2OS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2SS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2SS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2OS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2OS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2SS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2SS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
Cutflow event yields of the Intermediate stau SRs in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying medium taus; be selected and matched by the asymmetric ditau trigger or ditau+MET trigger with offline cuts using HLT threshold values. The different yields of preliminary event reduction are caused by different trigger scale factor.
Cutflow event yields of the Intermediate stau SRs in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying medium taus; be selected and matched by the asymmetric ditau trigger or ditau+MET trigger with offline cuts using HLT threshold values. The different yields of preliminary event reduction are caused by different trigger scale factor.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The best expected signal region used to set limits in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The acceptance $A$ of the Intermediate $Wh$ signal region SR-Wh-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The efficiency $\epsilon$ of the Intermediate $Wh$ signal region SR-Wh-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The acceptance $A$ of the Intermediate $Wh$ signal region SR-Wh-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The efficiency $\epsilon$ of the Intermediate $Wh$ signal region SR-Wh-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
Cutflow event yields of the Intermediate $Wh$ SRs in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have one single lepton and two hadronically decaying medium taus; be selected and matched by the single lepton trigger with plateau cuts.
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2016 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 2.3%.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2017 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 3.7%.
Pre-fit data and background (reweighted $2b$) predictions for each $4b$ SR $E_\text{T}^\text{miss}$ and $m_\text{eff}$ bin of the low-mass channel for the 2018 data-taking period. The bottom panel shows the significance of any differences between the observed $4b$ data and the background prediction. The $1\sigma$ and $2\sigma$ bands are shown in green and yellow, respectively. All systematics are included except the background normalization, which is 1.8%.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. Results from a previous ATLAS search using 24.3-36.1 fb$^{-1}$ [13] are shown by the solid (observed) and dashed (expected) blue lines. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass and high-mass channels. The low-mass channel is used for $m_{\tilde{H}}<250$ GeV while the high-mass channel is used for $m_{\tilde{H}}\ge250$ GeV. The plot shows the 95% CL observed (solid) and expected (dashed) upper limits on $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})$, assuming the theory cross section for higgsino pair production. The higgsinos are assumed to decay as $\tilde{H}\rightarrow h + \tilde{G}$ or $\tilde{H}\rightarrow Z + \tilde{G}$. The phase space above the lines is excluded.
Exclusion limits of the low-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the low-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the high-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Exclusion limits of the high-mass channel. The plot shows the observed (solid) and expected (dashed) 95% CL upper limits on the cross section of higgsino pair production, assuming a higgsino decay branching ratio of $\mathcal{B}(\tilde{H}\rightarrow h + \tilde{G})=100\%$. The theory cross section and its uncertainty are shown by the solid red line and red shading. The bottom panel shows the ratio of the limits to the theory cross section. The phase space above the lines is excluded.
Results of the background-only fit in the low-mass channel discovery region SR_LM_150. Both pre-fit and post-fit values are shown.
Results of the background-only fit in the low-mass channel discovery region SR_LM_300. Both pre-fit and post-fit values are shown.
The experimental efficiency of the low-mass channel for the exclusion and discovery signal regions as a function of higgsino mass. The experimental efficiency is defined as the number of events passing the detector-level event selections divided by the number of events passing the event selections for a perfect detector. The denominator is obtained by implementing particle-level event selections that emulate the detector-level selections. This treats the lack of availability of $b$-jet triggers as an inefficiency.
The particle-level acceptance for the low-mass exclusion and discovery signal regions, shown as a function of higgsino mass. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons.
The experimental efficiency of the high-mass channel discovery regions as a function of higgsino mass. For each higgsino mass, the efficiency is shown for the SR-1 region corresponding to the mass. For masses above 1100 GeV, SR-1-1100 is used. The experimental efficiency is defined as the number of events passing the detector-level event selections divided by the number of events passing the event selections for a perfect detector. The denominator is obtained by implementing particle-level event selections that emulate the detector-level selections. The efficiency calculation considers only those signal events where both higgsinos decay to Higgs bosons.
The particle-level acceptance for the high-mass signal regions, shown as a function of higgsino mass. For each higgsino mass, the acceptance is shown for the SR-1 region corresponding to the mass. For masses above 1100 GeV, SR-1-1100 is used. The acceptance is defined as the fraction of signal events passing the particle-level event selection that emulates the detector-level selection. The acceptance calculation considers only those signal events where both higgsinos decay to Higgs bosons.
Cutflow for the low-mass channel for a representative 130 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 150 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 250 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 600 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 700 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 800 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 900 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 1000 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the low-mass channel for a representative 1100 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. The $b$-jet cut requires 4 or more $b$-jets with $p_\text{T}>40$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$, with the availability of $b$-jet triggers lowering the luminosity to 126 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 250 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 600 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 700 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 800 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 900 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1000 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1100 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1200 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1300 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1400 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Cutflow for the high-mass channel for a representative 1500 GeV signal. The preselection requires 4 or more jets with $p_\text{T}>25$ GeV and 2 or more $b$-jets with $p_\text{T}>25$ GeV. As the samples are generated with $\mathcal{B}(\tilde{H}\rightarrow h\tilde{G})$=50%, $\mathcal{B}(\tilde{H}\rightarrow Z\tilde{G})$=50% to allow for both decays to be studied, the $hh$ events selection is used to select the events where each of the higgsinos decays to a Higgs boson. Expected yields are normalized to a luminosity of 139 fb$^{-1}$. All selections are cumulative, with the exception of the SR cuts, which are each applied separately.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed CLs values per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Expected and observed cross-section upper-limit per signal point represented by the grey numbers. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid along with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Truth-level signal acceptances for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$) in a SR with the $S(d_0)$ requirement removed. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation, where the signal candidate track is identified as the charged particle with the largest distance between the interaction vertex and the secondary vertex of the higgsino decays.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-Low for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Signal efficiencies in SR-High for each production process ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$), defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level, where the $S(d_0)$ selecton efficiency has the largest impact. The higgsino decay products from $\Delta \mathrm{m}(\tilde{\chi}_1^\pm,\tilde{\chi}_1^0) < 0.4$ GeV signal have $p_{\mathrm{T}}$ too low to be reconstructed as the signal candidate tracks, and therefore the identified signal candidate tracks are typically from pile-up collisions or underlying events similar to the QCD track background, causing a low $S(d_0)$ selection efficiency in these plots.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 1.5, 1.0, and 0.75 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 1.5, 1.0, and 0.75 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 0.5, 0.35, and 0.25 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Event selection cutflows for signal samples with $m(\tilde{\chi}_{1}^0)$ = 150 GeV and $\Delta m(\tilde{\chi}_{1}^\pm, \tilde{\chi}_{1}^0)$ = 0.5, 0.35, and 0.25 GeV, including all six production processes ($\tilde{\chi}_1^\pm \tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$). The cross-section used to obtain the initial number of events ($\sigma(\mathrm{n}_{\mathrm{jets}}) \geq 1$) refers to an emission of at least one gluon or quark with $p_{\mathrm{T}} > 50$ GeV at the parton level.
Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a $W$ boson ($t\bar{t}W$) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s}=13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be $880 \pm 80$ fb, compared to a reference theoretical prediction of $745 \pm 50\,\textrm{(scale)} \pm 13\,\textrm{(2-loop approx.)} \pm 19\,\textrm{(PDF,} \alpha_{\textrm{S}})$ fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of $t\bar{t}W^{+}$ and $t\bar{t}W^{-}$ is measured inclusively to be ${A_{\mathrm{C}}^{\mathrm{rel}}} = 0.33 \pm 0.05$, in very good agreement with the theoretical prediction of $0.322 \pm 0.003\,\mathrm{(scale)} \pm 0.007\,\mathrm{(PDF)}$, as well as differentially.
All the entries of this HEP data record are listed.
Results of inclusive cross section measurement
A search for a new heavy boson produced via gluon-fusion in the four-lepton channel with missing transverse momentum or jets is performed. The search uses proton-proton collision data equivalent to an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected by the ATLAS detector between 2015 and 2018 at the Large Hadron Collider. This study explores the decays of heavy bosons: $R\rightarrow SH$ and $A\rightarrow ZH$, where $R$ is a CP-even boson, $A$ is a CP-odd boson, $H$ is a CP-even boson, and $S$ is considered to decay into invisible particles that are candidates for dark matter. In these processes, $S\rightarrow \textrm{invisible}$ and $H\rightarrow ZZ$. The $Z$ boson associated with the heavy scalar boson $H$ decays into all decay channels of the $Z$ boson. The mass range under consideration is 390-1300 (320-1300) GeV for the $R$ ($A$) boson and 220-1000 GeV for the $H$ boson. No significant deviation from the Standard Model backgrounds is observed. The results are interpreted as upper limits at a 95% confidence level on the cross-section times the branching ratio of the heavy resonances.
Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR1 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR2 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR3 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR1 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR2 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR3 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR4 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR5 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR6 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Observed and expected distributions of the invariant mass of the four-lepton system in the $A\to ZH\to 4\ell+X$ search for SR7 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{A}, m_{H}) = (510, 380)$ GeV signal is normalised to the observed upper limit on the cross-section (29.9 fb).
Local p0-values in the $(m_{H}, m_{R})$ plane for the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search with $m_{S} = 160$ GeV.
Local p0-values in the $(m_{H}, m_{A})$ plane for the $A\to ZH\to 4\ell+X$ search.
The observed upper limits at 95% confidence level on $\sigma(gg\to R)\times \mathcal{B}(R\to SH)\times (H\to ZZ)$ across the $(m_{H}, m_{R})$ plane with $m_{S} = 160$ GeV for the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search.
The expected upper limits at 95% confidence level on $\sigma(gg\to R)\times \mathcal{B}(R\to SH)\times (H\to ZZ)$ across the $(m_{H}, m_{R})$ plane with $m_{S} = 160$ GeV for the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search.
The observed upper limits at 95% confidence level on $\sigma(gg\to A)\times \mathcal{B}(A\to ZH)\times (H\to ZZ)$ across the $(m_{H}, m_{A})$ plane for the $A\to ZH\to 4\ell+X$ search.
The expected upper limits at 95% confidence level on $\sigma(gg\to A)\times \mathcal{B}(A\to ZH)\times (H\to ZZ)$ across the $(m_{H}, m_{A})$ plane for the $A\to ZH\to 4\ell+X$ search.
Cut-flow of the raw events at each selection stage for the $R\rightarrow SH\rightarrow 4\ell + E^{\textrm{miss}}_{\textrm{T}}$ signal with a mass point of $(m_R, m_H ) = (390, 220)$ GeV and $m_S = 160$ GeV. The events are shown for the individual and combined four-lepton channels. The SFOS denotes same flavour and opposite sign lepton pairs selection and the final selection is shown for each signal region. The final selection criteria for SR1 to SR3 are defined in Table 2 of the paper.
Cut-flow of the raw events at each selection stage for the $A\rightarrow Z(\rightarrow jj/\ell^+\ell^-/\textrm{invisible})H(\rightarrow 4\ell)$ signal with a mass point of $(m_A, m_H ) = (330, 220)$ GeV. The events are shown for the individual and combined four-lepton channels. The SFOS denotes same flavour and opposite sign lepton pairs selection and the final selection is shown for each signal region. The final selection criteria for SR1 to SR7 are defined in Table 2 of the paper.
Cut-flow of the raw events at each selection stage for the $A\rightarrow Z(\rightarrow 2\ell)H(\rightarrow 2\ell+jj/\textrm{invisible})$ signal with a mass point of $(m_A, m_H ) = (330, 220)$ GeV. The events are shown for the individual and combined four-lepton channels. The SFOS denotes same flavour and opposite sign lepton pairs selection and the final selection is shown for each signal region. The final selection criteria for SR1 to SR7 are defined in Table 2 of the paper.
This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic $qqbb$ final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at $\sqrt{s}=13$ TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting $b$-tagging properties are used to identify jets consistent with Higgs bosons decaying into $b\bar{b}$. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be $\mu = 1.4 ^{+1.0}_{-0.9}$ and the corresponding cross section is $3.1 \pm 1.3\, (stat.)\: ^{+1.8}_{-1.4}\, (syst.$) pb.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [250,450) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [450,650) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H \geq 650$ GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Definition of the dilepton signal regions.
Definition of the trilepton signal regions.
Definition of the tetralepton signal regions.
Definition of the fiducial volumes at particle- and parton-level. Leptons refer exclusively to electrons and muons - they are dressed with additional radiation at particle-level, but not at parton-level.
Definition of the dilepton $t\bar{t}$ validation regions.
Pre-fit distribution of the number of $b$-jets in 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j1b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-5j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Definition of the tetralepton control region.
Definition of the trilepton fakes control regions.
Pre-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region.
Pre-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region.
Pre-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region.
Post-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region
Post-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region
Post-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region
Post-fit distribution of NN output in SR-2L-5j2b region.
Post-fit distribution of NN output in SR-2L-6j1b region.
Post-fit distribution of NN output in SR-2L-6j2b region.
Post-fit distribution of DNN-$t\bar{t}Z$ output in 3L-SR-ttZ region.
Post-fit distribution of DNN-$t\bar{t}Z$ outputt in 3L-SR-tZq region.
Post fit events yields in 3L-SR-WZ region.
Post-fit distribution of NN output in 4L-SR-SF region.
Post-fit distribution of NN output in 4L-SR-DF region.
Post-fit distribution of b-tagger output for leading b-jet in 4L-CR-ZZ region.
Measured values of the background normalizations obtained from the combined fit. The uncertainties include statistical and systematic sources.
Measured $\sigma_{t\bar{t}\text{Z}}$ cross sections obtained from the fits in the different lepton channels. The uncertainties include statistical and systematic sources.
Grouped impact of systematic uncertainties in the combined inclusive fit to data.
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 top-left).
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 top-right).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 bottom-left).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 bottom-right).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 top-left and Figure 11 top-left).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 top-right).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 bottom-left).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 bottom-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 top-left and Figure 11 top-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 top-right).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 bottom-left).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19 top-left and Figure 11 bottom-left).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, top-right).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19, bottom-left).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20 top-left and Figure 11 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, top-right).
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20, bottom-left)
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, bottom-right)
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21 top-left and Figure 12 top-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21, bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22 top-left and Figure 12 bottom-left).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23 top-left and Figure 12 bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, bottom-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24 top-left and Figure 12 top-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, top-right).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24, bottom-left).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, bottom-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 top-left and Figure 9 top-left).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 top-left and Figure 10 bottom-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 top-left and Figure 10 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 top-right).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 bottom-left).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 bottom-right).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 top-left and Figure 10 top-left).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 top-right).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 bottom-left).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 left and Figure 9 bottom-left).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 top-left and Figure 9 top-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 top-left and Figure 10 top-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 left and Figure 9 bottom-right).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 right).
Bootstrap replicas (0-499) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Parton-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Particle-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region CR-4L-ZZ.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at parton-level.
Ranking of nuisance parameters and background normalizations on signal strength for inclusive cross section measurement in combination of all channels
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for Fisher-rotated directions of EFT sensitivity, in the marginalised linear fit.
Correlation matrix of the input particle-level observables used in the EFT fit.
Measurements of the substructure of top-quark jets are presented, using 140 fb$^{-1}$ of 13 TeV $pp$ collision data recorded with the ATLAS detector at the LHC. Top-quark jets reconstructed with the anti-$k_{t}$ algorithm with a radius parameter $R=1.0$ are selected in top-quark pair ($t\bar{t}$) events where one top quark decays semileptonically and the other hadronically, or where both top quarks decay hadronically. The top-quark jets are required to have transverse momentum $p_\mathrm{T} > 350$ GeV, yielding large samples of data events with jet $p_\mathrm{T}$ values between 350 and 600 GeV. One- and two-dimensional differential cross-sections for eight substructure variables, defined using only the charged components of the jets, are measured in a particle-level phase space by correcting for the smearing and acceptance effects induced by the detector. The differential cross-sections are compared with the predictions of several Monte Carlo simulations in which top-quark pair-production quantum chromodynamic matrix-element calculations at next-to-leading-order precision in the strong coupling constant $\alpha_\mathrm{S}$ are passed to leading-order parton shower and hadronization generators. The Monte Carlo predictions for measures of the broadness, and also the two-body structure, of the top-quark jets are found to be in good agreement with the measurements, while variables sensitive to the three-body structure of the top-quark jets exhibit some tension with the measured distributions.
Absolute differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $\tau_{21}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $\tau_{21}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $\tau_{21}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $\tau_{3}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $\tau_{3}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $\tau_{3}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet ECF2 at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet ECF2 at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet ECF2 at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $D_{2}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $D_{2}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $D_{2}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $C_{3}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $C_{3}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $C_{3}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $p_\mathrm{T}^{d,*}$ (jet $p_T$ dispersion) at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $p_\mathrm{T}^{d,*}$ (jet $p_T$ dispersion) at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $p_\mathrm{T}^{d,*}$ (jet $p_T$ dispersion) at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet LHA at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet LHA at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet LHA at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 122.5 GeV < $m^{top}$ < 157.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 157.5 GeV < $m^{top}$ < 187.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 187.5 GeV < $m^{top}$ < 222.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 122.5 GeV < $m^{top}$ < 157.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 157.5 GeV < $m^{top}$ < 187.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 187.5 GeV < $m^{top}$ < 222.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 122.5 GeV < $m^{top}$ < 157.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 157.5 GeV < $m^{top}$ < 187.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 187.5 GeV < $m^{top}$ < 222.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 122.5 GeV < $m^{top}$ < 157.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 157.5 GeV < $m^{top}$ < 187.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $m^{top}$ in 187.5 GeV < $m^{top}$ < 222.5 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 122.5 GeV < $m^{top}$ < 157.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 157.5 GeV < $m^{top}$ < 187.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $m^{top}$ at particle level in the $\ell$+jets channel in 187.5 GeV < $m^{top}$ < 222.5 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 350.0 GeV < $p_{T}$ < 500.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 500.0 GeV < $p_{T}$ < 550.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 550.0 GeV < $p_{T}$ < 650.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 650.0 GeV < $p_{T}$ < 750.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 750.0 GeV < $p_{T}$ < 2000.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $\tau_{32}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 350.0 GeV < $p_{T}$ < 500.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 500.0 GeV < $p_{T}$ < 550.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 550.0 GeV < $p_{T}$ < 650.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 650.0 GeV < $p_{T}$ < 750.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $\tau_{32}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 750.0 GeV < $p_{T}$ < 2000.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 350.0 GeV < $p_{T}$ < 500.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 500.0 GeV < $p_{T}$ < 550.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 550.0 GeV < $p_{T}$ < 650.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 650.0 GeV < $p_{T}$ < 750.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 750.0 GeV < $p_{T}$ < 2000.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 350.0 GeV < $p_{T}$ < 500.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 500.0 GeV < $p_{T}$ < 550.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 550.0 GeV < $p_{T}$ < 650.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 650.0 GeV < $p_{T}$ < 750.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Covariance matrix between the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of RC large-R jet $D_{2}$ vs $p_{T}$ in 750.0 GeV < $p_{T}$ < 2000.0 GeV at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 350.0 GeV < $p_{T}$ < 500.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 500.0 GeV < $p_{T}$ < 550.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 550.0 GeV < $p_{T}$ < 650.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 650.0 GeV < $p_{T}$ < 750.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of RC large-R jet $D_{2}$ vs $p_{T}$ at particle level in the $\ell$+jets channel in 750.0 GeV < $p_{T}$ < 2000.0 GeV. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.