A study is made of the ωπ 0 system produced near threshold in the reaction γ p→ π + π − π 0 π 0 p. A spin-parity analysis shows that the ωπ 0 enhancement is consistent with predominant 1 + B(1235) production, with ∼20% J P = 1 − background.
MEAN BEAM ENERGY IS 39 GEV.
ESTIMATE OF B(1235) PRODUCTION CROSS SECTION ASSUMING 1+ CROSS SECTION OF 0.63 +- 0.20 MUB AND THAT 20 PCT OF THIS IS DUE TO BACKGROUND S-WAVE CONTRIBUTIONS.
A peak is reported in the ηπ + π − system, produced in the reaction γ p→ ηπ + π − p, at a mass of 1.28 ± 0.01 GeV with a width of 0.08 ± 0.02 GeV. Possible spin-parity assignments for the peak are shown to be J π = 1 − , J π = 1 + or J π = 2 + and interpretations of these assignments are discussed.
No description provided.
No description provided.
Results on photoproduction of π + π − π 0 in the photon energy range 20–70 GeV are presented. For the ω meson, the production cross-section is found to be 1010±15 (statistical)±290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The φ meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π − π 0 ) of 610±35±170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a broad π + π − π 0 continuum, mainly via ϱπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 ωb. The spin-parity content is analysed by the moments of the π + π − π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π − π 0 Dalitz plot. It is found that production of J P = 1 − states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson.
No description provided.
EXPONENTIAL FITS TO D(SIG)/DT IN OMEGA MASS REGION.
EXPONENTIAL FITS TO D(SIG)/DT OVER FULL ENERGY FOR THREE MASS REGIONS CORRESPONDING TO OMEGA, PHI AND OMEGA*.
Measurements of the K - p and K + p elastic differential cross sections at 20 and 50 GeV/ c , respectively, have been made in the momentum transfer range 0.7 < ∥ t ∥ < 8.0 GeV/ c .
No description provided.
No description provided.
A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.
EARLIER RESULTS GIVEN IN 'A'.
No description provided.
No description provided.
Measurements of the differential elastic cross sections for π − p scattering at incident momenta of 20 and 50 GeV c and π + p at 50 GeV c in the momentum transfer range 0.7 < |t|; < 8.0 ( GeV c ) 2 are presented. The data are compared with various models of elastic scattering.
No description provided.
No description provided.
No description provided.
The p p elastic differential cross section at 50 GeV/c has been measured in a two-arm spectrometer experiment at the CERN SPS. The | t | range covered extends from 0.7 to 5 (GeV/c. A pronounced dip-bump structure is observed with a sharp minimum at | t | = 1.5 (GeV/ c ) 2 .
No description provided.
None
No description provided.
No description provided.
No description provided.
Elastic cross-section measurements are presented for π ± −p at 20 GeV/ c and π − −p at 30 GeV/ c incident momenta in the large angle region (50° to 90° in the c.m. system). The data are compared with published lower energy elastic cross sections. A test is made of the dimensional counting rules for π ± −p elastic scattering and some indication of a deviation from this rule is observed in the π − −p case. A comparison is also made with the predictions of the constituent interchange model. Although the broad features of the predictions are confirmed, there are some important discrepancies. Finally, the predictions of the model due to Preparata and Soffer are also compared with the new data.
No description provided.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
THE UPPER LIMIT QUOTED WHEN NO EVENTS OBSERVED IS THE CROSS SECTION CORRESPONDING TO ONE DETECTED EVENT.
We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.
THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).