We have measured the total cross section for electron-positron annihilation into three or more hadrons, with at least two charged particles in the final state. The measurement was made at a center-of-mass energy of 4 GeV with a 2π−sr nonmagnetic detector. With 88 events detected, we obtain a model-independent lower limit on the hadron production cross section of 9.6 ± 1.4 nb; a calculation of detection efficiency based on invariant phase-space production of pions leads to a total cross section of 26 ± 6 nb. This cross section is 4.7 ± 1.1 times the theoretical total cross section for e+e−→μ+μ−. The average charged multiplicity is n¯=4.2±0.6.
No description provided.
The polarization of scattered antiproton in\(\bar pp\) elastic scattering has been measured at the kinetic energy of 220MeV by means of double scattering in a bubble chamber. The polarizations obtained are 0.28±0.11, 0.46±0.12, 0.51±0.19 and 0.38±0.31 at the scattering angles 28°, 42°, 56° and 73° in the c.m. system, respectively. These results do not seem to be in good agreement with a prediction given by Bryan and Phillips. We have also compared these data with a modified diffraction model.
POLARIZATION ASSUMED POSITIVE.
The neutron-proton elastic differential cross section has been measured with high statistics for incident momenta between 10 and 24 GeV/ c using wire spark chambers for the neutron detection. The t -range covered by previous experiments could thus be extended to 0.06–3 (GeV/ c ) 2 . In this t -interval the np cross section is found to be very similar to the corresponding pp cross section.
No description provided.
No description provided.
No description provided.
Pions from the reaction γ + p → π + + n were analysed in the backward direction by a magnetic spectrometer. The photon energy region of 0.394 GeV to 1.397 GeV was covered by 19 different momentum settings. Data reduction resulted in 74 measured differential cross sections with statistical uncertainties typically from 4% to 8%. The systematic uncertainty was estimated to be ±5%. The data are compared to other recent experiments and predictions of phenomenological analyses.
No description provided.
We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.
No description provided.
Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.
No description provided.
The total cross sections of 4 He, 6 Li, 7 Li, 9 Be, 12 C and 32 S for positive and negative pions have been measured in the energy range 80 to 260 MeV in a transmission experiment. Coulomb corrections were applied using real parts of the forward nuclear amplitudes as determined from dispersion relations. At the lower energies there remain large residual differences between the π + and π − scattering on the isoscalar nuclei. These can be largely understood in terms of the Coulomb distortion.
No description provided.
No description provided.
No description provided.
The differential cross sections for the reaction γ + n → π 0 + n have been measured at pions angles of 45°, 60°, 105°, 120° and 140° in the c.m.s. for photon energies of 500–900 MeV. Both π 0 meson and recoil neutron from a liquid deuterium target were detected with a pair of Čerenkov counters combined with lead spark chambers and a hodoscope consisting of 16 modules of plastic scintillation counters.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
We have studied high-energy proton scattering on Be, C, Cu and Pb targets using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/ c , the square of the four-momentum transfer varied from t = 0.1 to t = 4.4 GeV 2 . We have recorded momentum distributions of scattered protons in the high-momentum range. An application of multiple-scattering theory yielded agreement of calculation and experimental results to within a ± 30% uncertainty of the former.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.
X ERROR D(OMEGA) = 0.0076 MSR.