We present evidence for a large scalar contribution to the cross section for the reaction ep→eK+Λ. No evidence for a scalar contribution is found for the reaction ep→eK+Σ0. This is reminiscent of the results for the π+n and π+Δ0 final states.
AVERAGED OVER PHI. FOR LOW EPSILON, SOME DEUTERIUM DATA ARE INCLUDED. INCLUDING EARLIER MEASUREMENTS AT HIGH EPSILON.
AVERAGED OVER PHI. INCLUDING EARLIER MEASUREMENTS AT HIGHER EPSILON.
This paper reports measurements of the inclusive pion electroproduction reaction e+N→e+π±+ anything with both proton and neutron targets for pions produced along and near the direction of the virtual photon. Two independent purposes of these measurements were to provide data at low ε and at high Q2. Data are reported for the (W,Q2,ε) points (2.2 GeV, 1.2 GeV2, 0.45), (2.7, 2.0, 0.35), (2.7, 3.3, 0.40), (2.7, 6.2, 0.40), and (2.7, 9.5, 0.40). The data are used to test Feynman scaling and to compare the ratio of the cross sections for charged-pion production to the quark-model predictions. The data are also used in conjunction with the data from earlier experiments to separate the scalar and transverse components of the cross section.
No description provided.
No description provided.
No description provided.
We report measurements of the inclusive electroproduction reaction e+p→e+p+X for protons produced between 100° and 150° in the virtual-photon-target-proton center-of-mass system. Data were taken at the (W,Q2) points (2.2 GeV, 1.2 GeV2), (2.2, 3.6), (2.65, 1.2), (2.65, 2.0), (2.65, 2.8), (2.65, 3.6), (3.1, 1.2), and (3.1, 2.0). The invariant structure function is studied as a function of W, Q2, xT, pT2, and MX2.
No description provided.
No description provided.
No description provided.
We report measurements of the exclusive electroproduction reaction e+p→e+π++n for pions produced near 0° in the virtual-photon-proton center-of-mass system with values of ε in the range 0.35<ε<0.45. Combination with data taken at ε near 1 allows us to separate the contributions from transversely polarized and scalar photons in the range 1.2 GeV2<Q2<3.3 GeV2.
No description provided.
No description provided.
No description provided.
We report measurements of the electroproduction of single charged pions from hydrogen and deuterium targets for values of ε in the range 0.35<ε<0.45. Data were taken with a hydrogen target at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.65, 2.0), (2.65, 3.4), (2.65, 6.0), and (2.65, 10.0). Data were taken with a deuterium target at the (W, Q2) points (2.15, 1.2) and (2.65, 2.0). The transverse cross section obtained by using these data in conjunction with earlier data at high ε to separate the longitudinal and transverse components is used in conjunction with the new data and the t-channel Born term to determine the pion form factor and to re-evaluate previously reported measurements. In the range 0.15 GeV2<Q2<10.0 GeV2 the pion form factor can be described by the simple pole form [1+Q2(0.462±0.024)]−1.
DATA POINT 5 (HYDROGEN TARGET).
The photoproduction of the ψ(3100) meson from a beryllium target has been measured using an 11.8-GeV bremsstrahlung beam. The energy and angular dependence of the measured spectra may be obtained from an elastic nucleon cross section of the form dσdt=(1.01±0.20)exp[(1.25±0.20)t] nb/GeV2. This cross section is exceedingly small in comparison with those of the other vector mesons.
ELECTRON PAIR PRODUCTION FROM BERYLLIUM TARGET. ELASTIC CROSS SECTION VALUE ALLOWS FOR SYSTEMATIC UNCERTAINTIES AND POSSIBLE INELASTIC CONTRIBUTIONS. -TMIN = 0.41 GEV**2.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.
Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".
Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.
Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.
Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.
No description provided.
In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.
Signal strength modifiers per production mode $\mu_i$.
Signal strength modifiers per decay mode $\mu^f$.
Simultaneous coupling measurement $\kappa_V/\kappa_f$