A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
This Letter presents a constraint on the total width of the Higgs boson ($\Gamma_H$) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on $\Gamma_H$ is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).
A search for events with one displaced vertex from long-lived particles using data collected by the ATLAS detector at the Large Hadron Collider is presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of long-lived particles decaying into hadronic jets in the muon spectrometer displaced between 3 m and 14 m from the primary interaction vertex. The observed number of events is consistent with the expected background and limits for several benchmark signals are determined. A scalar-portal model and a Higgs-boson-portal baryogenesis model are considered. A dedicated analysis channel is employed to target Z-boson associated long-lived particle production, including an axion-like particle and a dark photon model. For the Higgs boson model, branching fractions above 1% are excluded at 95% confidence level for long-lived particle proper decay lengths ranging from 5 cm to 40 m. For the photo-phobic axion-like particle model considered, this search produces the strongest limits to date for proper decay lengths greater than $\mathcal{O}(10)$ cm.
A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run 2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/ψ$ or $η_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is ~10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/Λ$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.
A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.
A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $\tau$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).
Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.
A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb$^{-1}$. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.
A search is presented for a heavy resonance decaying into a Z boson and a Higgs (H) boson. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded with the CMS experiment in the years 2016-2018. Resonance masses between 1.4 and 5 TeV are considered, resulting in large transverse momenta of the Z and H bosons. Final states that result from Z boson decays to pairs of electrons, muons, or neutrinos are considered. The H boson is reconstructed as a single large-radius jet, recoiling against the Z boson. Machine-learning flavour-tagging techniques are employed to identify decays of a Lorentz-boosted H boson into pairs of charm or bottom quarks, or into four quarks via the intermediate H $\to$ WW* and ZZ* decays. The analysis targets H boson decays that were not generally included in previous searches using the H $\to$$\mathrm{b\bar{b}}$ channel. Compared with previous analyses, the sensitivity for high resonance masses is improved significantly in the channel where at most one b quark is tagged.
A measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb$^{-1}$. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5 $\pm$ 1.6 (stat) $^{+2.6}_{-2.5}$ (syst) $\pm$ 1.2 (lumi) pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 $\pm$ 1.5 (stat) $\pm$ 2.4 (syst) $\pm$ 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5 $^{+3.5}_{-3.7}$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.