Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-289, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Observation of single-top-quark production in association with a photon using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 181901, 2023.
Inspire Record 2628980 DOI 10.17182/hepdata.134244

This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.

26 data tables

This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.

Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.

Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Version 2
Charged-particle distributions at low transverse momentum in $\sqrt{s}$=13 TeV pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 502, 2016.
Inspire Record 1467230 DOI 10.17182/hepdata.73907

Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

20 data tables

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

More…

Charged-particle distributions in $pp$ interactions at $\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 403, 2016.
Inspire Record 1426695 DOI 10.17182/hepdata.73012

This paper presents measurements of distributions of charged particles which are produced in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \mathrm{\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

15 data tables

Central primary-charged-particle density 1/Nev dNch/deta at eta = 0 for five different phase spaces. The results are given for the fiducial definition tau > 300 ps, as well as for the previously used fiducial definition tau > 30 ps using an extrapolation factor of 1.012 +- 0.004 (for pT > 100 MeV) or 1.025 +- 0.008 (for pT > 500 MeV), which accounts for the fraction of charged strange baryons predicted by Epos LHC simulation.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

18 data tables

The average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

Charged-particle multiplicities in proton-proton collisions at a centre-of-mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\mathbf{\sqrt{\textit s}}$ = 13 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 319-329, 2016.
Inspire Record 1395253 DOI 10.17182/hepdata.70847

The pseudorapidity ($\eta$) and transverse-momentum ($p_{\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\eta|<$ 0.5 is 5.31 $\pm$ 0.18 and 6.46 $\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\rm T}$ $<$ 20 GeV/c and $|\eta|<$ 0.8 for events with at least one charged particle in $|\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

4 data tables

Average pseudorapidity density of charged particles as a function of eta produced in pp collisions at sqrt(s) = 13 TeV. The results are shown in the normalisation classes INEL and INEL>0. The uncertainties are the quadratic sum of statistical and systematic contributions.

Invariant charged-particle yield as a function of pT normalised to INEL>0 events.

Ratio of transverse-momentum spectra in INEL>0 events at $\sqrt{s}$ = 13 and 7 TeV.

More…

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 373-385, 2015.
Inspire Record 1394676 DOI 10.17182/hepdata.70834

The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\pm22$ (syst.) to $17170\pm770$ (syst.) in 80-90% and 0-5 central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.

4 data tables

Measurement of $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ for all centralities and a broad $\eta$ range. Combined and symmetrised $\mbox{d}N_{\mbox{ch}}/\mbox{d}\eta$ over 30-90 PCT centrality from both SPD and FMD. Previously published results for 0-30 PCT over the full pseudorapidity range available elsewhere [PLB726.610]. Please note the systematic uncertainty from the centrality determination is encoded as a qualifier in the table header.

Full--width half--maximum of the charged--particle pseudorapidity distributions versus the average number of participants. The uncertainties on the ALICE measurements are from the fit of $f_{\text{GG}}$ only and evaluated at $95\%$ confidence level.

The charged--particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants. Data for the 0 to 30 PCT most central events, and in ETARAP < 0.5 is available in previously published results [PLB726.610,PRC88.044910]. The uncertainties on $\left\langle N_{\text{part}}\right\rangle$ from the Glauber calculations not included (see [PRC88.044910]).

More…

Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

75 data tables

Measured pseudorapidity dependence of $dN/d\eta$ for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for INEL>0 collisions at a centre-of-mass energy of 900 GeV.

More…

Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton--lead collisions at $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 199, 2016.
Inspire Record 1386475 DOI 10.17182/hepdata.69240

The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.

5 data tables

The $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties for centrality intervals used in this analysis together with asymmetric systematic uncertainties for Glauber model, GGFC with $\omega$=0.11 and GGFC with $\omega$=0.2.

Centrality dependence of the charged particle pseudorapidity distribution measured in several centrality intervals for charged particles with $p_{T} > 0.1$ GeV. The first uncertainty is statistical the second systematic.

Centrality dependence of the charged particle pseudorapidity distribution measured in several centrality intervals for charged particles with $p_{T} > 0$ GeV. The first uncertainty is statistical the second systematic.

More…