Showing 10 of 1191 results
Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.
Delta phi / Correlation Function 3-4 GeV/c partners
Delta phi / Correlation Function 3-4 GeV/c partners
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
$I^{out}_{AA}/I^{in}_{AA}$ ratio, central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, mid-central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, mid-central collisions
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 3-4 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 4-5 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 5-7 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 3-4 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 4-5 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 5-7 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 3-4 GeV/c
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
red data points
black histogram
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
dN/deta phis=045 deg, pt=0.151 GeV/c
dN/deta phis=045 deg, pt=0.153 GeV/c
dN/deta phis=090 deg, pt=0.51 GeV/c
dN/deta phis=090 deg, pt=12 GeV/c
dN/deta phis=4590 deg, pt=0.151 GeV/c
sigma vs phis pt=0.151 GeV/c
sigma vs phis pt=0.153 GeV/c
sigma vs phis pt=0.51 GeV/c
sigma vs phis pt=12 GeV/c
sigma vs pt phis=045 deg
sigma vs pt phis=090 deg
sigma vs pt phis=4590 deg
background uncertainty caps in the figure
flow uncertainty curves in the figure
leadage uncertainty arrows in the figure
total uncertainty boxes in the figure
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
0^{o} < phi_{s} < 45^{o}
45^{o} < phi_{s} < 90^{o}
Previous in-plane result published in 2004
Previous out-of-plane result published in 2004
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}15^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 75^{o}90^{o}
Cone region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
Pi region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
d+Au, 3<p_{\text{T}}^{(t)}<4 GeV/c
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (a) 0^{o}<#phi_{s}<15^{o}
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (b) 75^{o}<#phi_{s}<90^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (a) 0^{o}<phi_{s}<15^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (b) 75^{o}<phi_{s}<90^{o}
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 0, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, jet
1<p_{\text{T}}^{(a)}<2 GeV/c, jet
0-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/, slice 0, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, ridge
1<p_{\text{T}}^{(a)}<2 GeV/c, ridge
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, ridge
fig17_ampl_pt_inclusive
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
dAu jetlike eta sigma
dAu jetlike phi sigma
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
v_{2} /3
v_{3}
v_{4}
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation Difference of the above results default results in Fig.21, slice 0
background subtracted correlation Difference of the above results default results in Fig.21, slice 1
background subtracted correlation Difference of the above results default results in Fig.21, slice 2
background subtracted correlation Difference of the above results default results in Fig.21, slice 3
background subtracted correlation Difference of the above results default results in Fig.21, slice 4
background subtracted correlation Difference of the above results default results in Fig.21, slice 5
d+Au background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles
difference from default results, slice 0
difference from default results, slice 1
difference from default results, slice 2
difference from default results, slice 3
difference from default results, slice 4
difference from default results, slice 5
raw signal
bkgd <v2t*v2>
bkgd <v2t>*<v2> (previous inclusive analysis)
bkgd <v2t*v2> subtracted
bkgd <v2t>*<v2> subtracted (previous inclusive analysis)
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Extrapolated average transverse momenta ⟨pT ⟩ as a function of dNch/dy for different particle species in Au+Au collisions at 62.4 GeV. Statistical uncertainties are represented by the error bars at the points while the systematic uncertainties are represented by the gray bars. The π, charged K and p data were extracted from Ref. [14].
KS0 dN/dpT spectra compared to the charged Kaon spectra for the event centrality of 0-5% and 30-40%. The charged Kaons data points are for rapidity range of |y| < 0.1 and were extracted from Ref. [14].
KS0 dN/dpT spectra compared to the charged Kaon spectra for the event centrality of 0-5% and 30-40%. The charged Kaons data points are for rapidity range of |y| < 0.1 and were extracted from Ref. [14].
Strange particle production yields at mid-rapidity in central Au+Au and Pb+Pb collisions versus the center of mass energy √sNN. The top panel shows results for K0S and Λ. The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi-strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Strange particle production yields at mid-rapidity in central Au+Au and Pb+Pb collisions versus the center of mass energy √sNN. The top panel shows results for K0S and Λ. The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi-strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Anti-baryon to baryon yield ratios for strange baryons versus the center of mass energy √sNN. Λ/Λ is shown in the top panel while the multi-strange baryons are on the bottom panel. The data from AGS are not corrected for the weak decay feed-down from the multistrange baryons while the data from SPS and RHIC are corrected. The lines are the results of a thermal model calculation (see text section IV A). The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi- strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Antibaryon-to-baryon yield ratios for strange particles and protons as a function of dNch/dy at √sNN=62.4 and 200 GeV. The p data were extracted from Ref. [14]. The √sNN=200 GeV strange hadron data were extracted from Ref. [15].
Particle-yield ratios as obtained by measurements (black dots) for the most central (0–5%) Au+Au collisions at 62.4 GeV and statistical model predictions (lines). The ratios indicated by the dashed lines (blue) were obtained by using only π, K, and protons, whereas the ratios indicated by the full lines (green) were obtained by also using the hyperons in the fit.
Chemical freeze-out temperature Tch (a) and strangeness saturation factor γs (b) as a function of the mean number of participants.
Chemical freeze-out temperature Tch (a) and strangeness saturation factor γs (b) as a function of the mean number of participants.
Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.
Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π− as a function of √sNN. The lines are the results of the thermal model calculation (see text Sec. 4a). The SPS values are from NA49 [20] (centrality 0–7%) and the RHIC values are from STAR [4, 15] (centrality 0–5%). For the multistrange baryons Ξ and Ω (bottom), the SPS results are from NA57 [2] (centrality 0–11%) and the RHIC values are from STAR [15, 21] (centrality 0–20%).
Nuclear modification factor RCP, calculated as the ratio between 0–10% central spectra and 40–80% peripheral spectra, for π, K0S, Λ, and Ξ particles in Au+Au collisions at 62.4 GeV. The π RCP values were extracted from Ref. [10]. The gray band on the right side of the plot shows the uncertainties on the estimation of the number of binary collisions and the gray band on the lower left side indicates the uncertainties on the number of participants.
Nuclear modification factor RCP, calculated as the ratio between 0–5% central spectra and 40–60% peripheral spectra, for Λ and Ξ particles measured in Au + Au collisions at 62.4 GeV. The gray band corresponds to the equivalent RCP curve for the Λ particles measured in Au+Au collisions at 200 GeV [15].
Λ/K0S ratio as a function of transverse momentum for different centrality classes. 0–5% (solid circles), 40–60% (open squares), and 60–80% (solid triangles) in Au+Au collisions at 62.4 GeV.
Maximum value of the Λ/K0S ratio from Au+Au collisions at 62.4 GeV (solid circles) and 200 GeV (open circles) [11] as a function of ⟨Npart⟩ for different centrality classes. The lowest ⟨Npart⟩ point corresponds to p+p collisions at 200 GeV [44]. The maximum of the Λ––/K0S from Au+Au collisions at 62.4 GeV is shown as solid triangles.
We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.
$J/\psi$ $B_{ll}$ $dN/dy$ in $p+p$ collisions as a function of rapidity. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
$J/\psi$ $B_{ll}$ $dN/dy$ in $d$+Au collisions as a function of rapidity. The $d$+Au yields are divided by the average number of nucleon-nucleon collisions $\langle N_{coll}$(0-100%)$\rangle$ = 7.6. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ invariant yields at $\sqrt{s}$=200 GeV. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{dAu}$ value. The sysA uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{dAu}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{dAu}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
$d$+Au vs centrality vs $y$. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{dAu}$ value. The sysA uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{dAu}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{dAu}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{CP}$ value. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{CP}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{CP}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from $W^{+}$ and $W^{-}$ boson production in longitudinally polarized proton-proton collisions at $\sqrt{s}=500 $GeV by the STAR experiment at RHIC. The measured asymmetries, $A^{W^+}_{L}=-0.27\pm 0.10\/({\rm stat.})\pm 0.02\/({\rm syst.}) \pm 0.03\/({\rm norm.})$ and $A^{W^-}_{L}=0.14\pm 0.19\/({\rm stat.})\pm 0.02 \/({\rm syst.})\pm 0.01\/({\rm norm.})$, are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.
$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.
$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.
Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions
Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions
Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \sqrt{s}=500\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\pm} to the light quarks. The observed electron and positron yields were used to estimate W^\pm boson production cross sections equal to \sigma(pp \to W^+ X) \times BR(W^ \to \nu_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and \sigma(pp \to W^{-}X) \times BR(W^\to e^-\bar{\nu_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.
The spectra of positive and negative candidates before and after an isolation cut. The computation of the background before the isolation cut is described in the text. The background band after the isolation cut is computed by scaling the background before the isolation cut by the isolation cut efficiency measured in the background region (12< $p_T$ <20GeV/$c$). The systematic errors include uncertainties in the photon conversion probability, the background normalization, and the background extrapoltion to $p_T$ > 30 GeV/$c$.
Background subtracted spectra of positron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.
Background subtracted spectra of electron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.
We report on event structure and double helicity asymmetry ($A_LL$) of jet production in longitudinally polarized p+p collisions at $\sqrt{s}$=200 GeV. Photons and charged particles were measured at midrapidity $|\eta| < 0.35$ with the requirement of a high-momentum ($>2$ GeV/$c$) photon in each event. Measured event structure is compared with {\sc pythia} and {\sc geant} simulations. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet $A_{LL}$, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster $p_T$ sum ($p_T^{\rm reco}$). The effect of detector response and the underlying events on $p_T^{\rm reco}$ was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the NLO pQCD jet production cross section. For $4 < p_T^{\rm reco} < 12$ GeV/$c$ with an average beam polarization of $< P > = 49%$ we measured $A_{LL} = -0.0014 \pm 0.0037^{\rm stat}$ at the lowest $p_T^{\rm reco}$ bin (4-5 GeV/$c$) and $-0.0181 \pm 0.0282^{\rm stat}$ at the highest $p_T^{\rm reco}$ bin (10-12 GeV/$c$) with a beam polarization scale error of 9.4% and a $\pT$ scale error of 10%. Jets in the measured $p_T^{\rm reco}$ range arise primarily from hard-scattered gluons with momentum fraction $0.02 < x < 0.3$ according to {\sc pythia}. The measured $A_{LL}$ is compared with predictions that assume various $\Delta G(x)$ distributions based on the GRSV parameterization. The present result imposes the limit $-1.1 < \int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.4$ at 95% confidence level or $\int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.5$ at 99% confidence level.
The relative yields of $q$+$q$, $q$+$g$, and $g$+$g$ subprocesses in the PYTHIA+GEANT simulation.
The correction factor $\epsilon^j_{trig+acc}$ for high-$p_T$ photon trigger efficiency and acceptance effect.
Reconstructed-jet $A_{LL}$ as a function of $p_T^{reco}$.
Measurements of double-helicity asymmetries for inclusive hadron production in polarized p+p collisions are sensitive to helicity--dependent parton distribution functions, in particular to the gluon helicity distribution, Delta(g). This study focuses on the extraction of the double-helicity asymmetry in eta production: polarized p+p --> eta + X, the eta cross section, and the eta/pi^0 cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Cross section for midrapidity inclusive of $\eta$ productions at $\sqrt{s}$ = 200 GeV as a function of $p_T$ and its comparison to NLO pQCD calculations at three different scales $\mu$. The error bars shown are the statistical and systematic uncertainties added in quadrature. Note that the fragmentation functions used in the calculations are partially constrained by this data.
Cross section ratio for the midrapidity production of inclusive $\eta$ to $\pi^0$ mesons at $\sqrt{s}$ = 200 GeV as a function of $p_T$. The error bars show the statistical and systematic uncertainties added in quadrature. The solid curve shows the ratio of the NLO pQCD calculations shown in Fig. 3 and the corresponding one for the $\pi^0$. The dashed curve shows the result of a PYTHIA Monte-Carlo simulation.
Double helicity asymmetry for midrapidity inclusive $\eta$ production from the combined 2005 and 2006 data at $\sqrt{s}$ = 200 GeV as a function of $p_T$. An additional 4.8% systematic uncertainty in the beam polarizations is not shown.
We report the first measurement of transverse single-spin asymmetries in $J/\psi$ production from transversely polarized $p+p$ collisions at $\sqrt{s} = 200$ GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed over the rapidity ranges $1.2 < |y| < 2.2$ and $ |y| < 0.35$ for transverse momenta up to 6 GeV/$c$. $J/\psi$ production at RHIC is dominated by processes involving initial-state gluons, and transverse single-spin asymmetries of the $J/\psi$ can provide access to gluon dynamics within the nucleon. Such asymmetries may also shed light on the long-standing question in QCD of the $J/\psi$ production mechanism. Asymmetries were obtained as a function of $J/\psi$ transverse momentum and Feynman-$x$, with a value of $-0.086 \pm 0.026^{\rm stat} \pm 0.003^{\rm syst}$ in the forward region. This result suggests possible nonzero trigluon correlation functions in transversely polarized protons and, if well defined in this reaction, a nonzero gluon Sivers distribution function.
Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62.4 GeV. The data are studied with hydrodynamically-motivated Blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au+Au and $pp$ collisions, the dependence of freeze-out parameters on the system size is also explored. This multi-dimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu+Cu collisions, which expands the system size dependence studies from Au+Au data with detailed measurements in the smaller system, shows that the bulk freeze-out properties of charged particles studied here scale with the total charged particle multiplicity at mid-rapidity, suggesting the relevance of initial state effects.
Negatively charged pion spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Negatively charged pion spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Negatively charged kaon spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Negatively charged kaon spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Negatively charged proton spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Negatively charged proton spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Positively charged pion spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Positively charged pion spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Positively charged kaon spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Positively charged kaon spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Positively charged proton spectra from Cu+Cu collisions 200 GeV as a function of pT for different centralities.
Positively charged proton spectra from Cu+Cu collisions 62.4 GeV as a function of pT for different centralities.
Mean transverse momentum of negatively charged pions, kaons and protons as a function of charged hadron multiplicity.
Mean transverse momentum of positively charged pions, kaons and protons as a function of charged hadron multiplicity [figure not available in published paper].
Integrated yields of negatively charged pions, kaons and protons as a function of charged hadron multiplicity.
Integrated yields of positively charged pions, kaons and protons as a function of charged hadron multiplicity [figure not available in published paper].
particle Ratios -I (pbar/pi^-, k^-/pi^-) versus multiplicity.
particle ratios -II (p/pi^+, k^+/pi^+) versus multiplicity.
particle ratios -III (p+pbar/pi, k/pi) versus multiplicity.
particle Ratios -IV (pi^-/pi^+, k^-/k^+, pbar/p) versus multiplicity [only pbar/p figure available in paper].
Enhancement factors for negatively charged pions, kaons and protons as a function of Npart [Ref. Phys.Rev.C 81, 044902, 2010]. pp dNdy values are from Ref [Phys.Rev.C 79, 034909, 2009].
The kinetic freeze-out temperature (Tkin) and chemical freeze-out temperature (Tch) versus multiplicity.
flow velocity versus multiplicity.
chemical potentials versus multiplicity.
strangeness suppression factor versus multiplicity.
dNch/deta values for different centrality.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.