Bhabha scattering data recorded at \sqrt{s}=189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are alpha^-1(-2.1 GeV^2) - alpha^-1(-6.25 GeV^2) = 0.78 +/- 0.26 alpha^-1(-12.25 GeV^2) - alpha^-1(-3434 GeV^2) = 3.80 +/- 1.29, in agreement with theoretical predictions.
No description provided.
Results extracted from the small angle Bhabha scattering sample at Z peak. Results contained total experimental uncertainty.
Results extracted from the large angle Bhabha scattering sample at sqrt(s) = 189 GeV. Results contained total experimental and theoretical uncertainty.
Cross-sections for hadronic, b-bbar and lepton pair final states in e+e- collisions at sqrt(s) = 183 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. Forward-backward asymmetries for the leptonic final states have also been measured. Cross-sections and asymmetries are also presented for data recorded in 1997 at sqrt(s) = 130 and 136 GeV. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a leptoquark, or of a squark or sneutrino in supersymmetric theories with R-parity violation.
No description provided.
The contribution of interference between initial- and final-state radiationhas been removed.
The contribution of interference between initial- and final-state radiationhas been removed.
We present the first measurement of the left-right asymmetry in Bhabha scattering with a polarized electron beam. The effective electron vector and axial vector couplings to the Z0 are extracted from a combined analysis of the polarized Bhabha scattering data and the left-right asymmetry previously published by this collaboration.
No description provided.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
None
DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.
A high-precision measurement of the differential cross section for Bhabha scattering (e+e−→e+e−) is presented. The measurement was performed with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. Effects due to electroweak interference are observed and agree well with the predictions of the Glashow-Salam-Weinberg model. The agreement between the data and the electroweak prediction rules out substructure of the electron up to mass scales of 1 TeV.
Error contains both statistics and systematics.
No description provided.
No description provided.
An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.
No description provided.
No description provided.
No description provided.