Date

Anti-Nucleon Production in Colliding e+ e- Beams at SPEAR

Berk, D. ; Buchanan, C.D. ; Drickey, Darrell James ; et al.
Lett.Nuovo Cim. 9 (1974) 475-478, 1974.
Inspire Record 3185 DOI 10.17182/hepdata.37333

None

1 data table

ONE EVENT SEEN - PROBABLY AN ANTIPROTON.


Updated Charged-Particle Multiplicity Distribution from 205-GeV/c Proton Proton Interactions

Barish, S. ; Cho, Y. ; Colley, D.C. ; et al.
Phys.Rev.D 9 (1974) 2689, 1974.
Inspire Record 609 DOI 10.17182/hepdata.21974

The charged-particle multiplicity distribution in 205−GeVc proton-proton interactions is presented. In addition, the total diffractive contributions to each charged multiplicity are estimated assuming a factorizable Pomeron.

1 data table

THE TOTAL CROSS SECTION NORMALIZATION COMES FROM THIS AND OTHER EXPERIMENTS.


Inclusive single-particle distributions in $\pi^{\pm}$ $p$ reactions at 8 and 16 {GeV/c}

Bosetti, P. ; Grassler, H. ; Kirk, H. ; et al.
Nucl.Phys.B 54 (1973) 141-160, 1973.
Inspire Record 87988 DOI 10.17182/hepdata.811

Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.

73 data tables

No description provided.

No description provided.

No description provided.

More…

K+ n charge exchange at 3.8 gev/c

Moninger, W. ; Eisenstein, Bob I. ; Kim, J. ; et al.
Phys.Rev.D 8 (1973) 38-44, 1973.
Inspire Record 81978 DOI 10.17182/hepdata.22019

We have found 431 events of the reaction K+d→K0pps at 3.8−GeVc K+ beam momentum in a 295 000-frame exposure of the Argonne National Laboratory 30-in. deuterium-filled bubble chamber. The event sample consists of one- and two-prong events with a visible K0 decaying to π+π− The total and differential cross sections are found after correction for unseen K0's and for efficiencies in the scanning-measuring-fitting chain. Comparisons of the data are made to an SU(3) sum rule, a Regge model, and data for K−p→K¯0n.

2 data tables

No description provided.

GLAUBER SCREENING AND PAULI EXCLUSION PRINCIPLE CORRECTIONS ARE REQUIRED TO YIELD THE K+ N CHARGE EXCHANGE CROSS SECTION. THE GLAUBER CORRECTION IMPLIES AN INCREASE IN THE CROSS SECTIONS BY THE FACTOR 1.016. THE PAULI CORRECTION IS SLIGHT EXCEPT AT LOW -T (<0.2 GEV**2) WHERE IT IS LARGE AND UNCERTAIN.


Cross sections for resonance production in the reaction pi+- p ---> p pi+- pi+ pi- at 16-GeV/c, as obtained by a maximum likelihood fit

The Aachen-Berlin-Bonn-CERN-Heidelberg collaboration Honecker, R. ; Rumpf, K. ; Tsanos, N. ; et al.
Nucl.Phys.B 50 (1972) 157-165, 1972.
Inspire Record 84326 DOI 10.17182/hepdata.32751

Cross sections for resonance production in the reactions π ± p → p π ± π + π − at 16 GeV/ c are determined by a maximum likelihood fit, making use of the measurements of all individual events. The reactions are described by a simple parametrization based on an incoherent superposition of amplitudes for quasi two-body and quasi three-body processes and a non-resonant backgroud. In this way the reflections are accounted for in a consistent way. Thus cross sections are obtained for Δ ++ , Δ 0 , ρ 0 and f 0 production which do not suffer from the uncertainties of background subtraction typical of the usual technique of fitting individual mass distributions.

2 data tables

TWO PARTICLE RESONANCE CROSS SECTIONS.

CHANNEL FRACTIONS FROM THE FITS. THE AUTHORS WARN AGAINST DERIVING CROSS SECTIONS FOR THREE-PARTICLE RESONANCES.


Average charged particle multiplicity and topological cross-sections in 50-GeV/c and 69-GeV/c p p interactions

Ammosov, V.V. ; Boitsov, V.N. ; Ermolov, P.F. ; et al.
Phys.Lett.B 42 (1972) 519-521, 1972.
Inspire Record 74383 DOI 10.17182/hepdata.28174

In an exposure of the chamber Mirabelle at the Serpukhov accelerator, 1 943 interactions at 50 GeV/ c and 8 959 at 69 GeV/ c have been observed. Topological cross sections and charged multiplicity distributions are presented. The average charged multiplicities found are respectively 5.32 ± 0.13 and 5.89 ± 0.07.

1 data table

2PRONG INELASTIC CROSS SECTIONS DERIVED BY SUBTRACTION OF OTHER PRONG CROSS SECTIONS AND KNOWN ELASTIC MEASUREMENTS FROM THE TOTAL.


Xi- production in 5.5-gev/c k- p interactions

Goldwasser, Edwin L. ; Schultz, P.F. ;
Phys.Rev.D 1 (1970) 1960-1966, 1970.
Inspire Record 61710 DOI 10.17182/hepdata.25069

Final states with a Ξ− hyperon have been studied in 5.5-GeV/c K−p interactions. Center-of-mass production angular distributions for the Ξ− have a peak in the beam direction, while those for the K+ or K0 meson peak in the opposite direction. Approximately half of the observed events involve the Ξ*(1530) or K*(890) resonances. The four- and five-body final states show production of the Ξ*(1930) in the Ξ−π+,0 mass spectrum and a narrow peak at 2295 MeV in the Ξ−π+π− mass spectrum. The mass of the Ξ− hyperon is 1321.9±0.5 MeV as determined from 195 Ξ− decays with a visible Λ decay, assuming a Λ-hyperon mass of 1115.58 MeV.

1 data table

No description provided.


Single-pion production in pi- p interactions at 2.26 gev/c

Reynolds, B.G. ; Albright, John R. ; Bradley, R.H. ; et al.
Phys.Rev. 184 (1969) 1424-1442, 1969.
Inspire Record 62283 DOI 10.17182/hepdata.26478

We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.

1 data table

No description provided.