The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$), for $7 < Q~2 < 25$ GeV$~2$ and for virtual photon-proton centre of mass energies ($W$) in the range 42-134 GeV, has been studied with the ZEUS detector at HERA. When compared to lower energy data at similar $Q~2$, the results show that the $\gamma~*p \rightarrow \phid p$ cross section rises strongly with $W$. This behaviour is similar to that previously found for the $\gamma~*p \rightarrow \rho~0 p$ cross section. This strong dependence cannot be explained by production through soft pomeron exchange. It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small $x$. The ratio of $\sigma (\phi) / \sigma (\rho~0)$, which has previously been determined by ZEUS to be 0.065 $\pm$ 0.013 (stat.) in photoproduction at a mean $W$ of 70 GeV, is measured to be 0.18 $\pm $ 0.05 (stat.) $\pm$ 0.03 (syst.) at a mean $Q~2$ of 12.3 GeV$~2$ and mean $W$ of $\approx$ 100 GeV and is thus approaching at large $Q~2$ the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism.
No description provided.
Additional 32 PCT Systematic error.
Additional 32 PCT Systematic error.
Cross-sections and angular distributions for the production of events with single and multiple photons are measured from data recorded with the OPAL detector at the recently upgraded LEP collider. The measured cross-sections are generally consistent with Standard Model expectations for the e + e − → ν v γ(γ) and e + e − → γγ ( γ ) processes. Six events with an acoplanar photon pair and large missing mass are found. The observed number of events is larger than expected from e + e − → ν ν γγ ; however, the missing mass distribution is compatible with the Z 0 resonance. Deviations from QED are constrained by the data on e + e − → γγ ( γ ). Lower limits are set at 95% confidence level on the QED cut-off parameters Λ + and Λ − of 152 GeV and 142 GeV, respectively, and also on the mass of an excited electron of 147 GeV.
No description provided.
No description provided.
No description provided.
We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.
Determination of alpha_s.
Multiplicity and high moments.
Tmajor distribution.
Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm
No description provided.
No description provided.
No description provided.
Inclusive π+ photoproduction below the Δ(1232) resonance has been measured from H, C, Ca, Sn, and Pb at laboratory angles of 51°, 81°, 109°, and 141° using tagged photons and ΔE-E plastic scintillator telescopes with 17-MeV thresholds. Particle identification involved both the determination of differential energy loss and the detection of the μ+ from the π+ decay. Double differential cross sections, angular distributions, and total cross sections were obtained for four incident photon energy bins centered at 184, 194, 204, and 213 MeV. Comparisons are made to both theoretical predictions and previous data sets. Ratios of nuclear cross sections to those obtained from the proton are extracted, and the features of these ratios are discussed. © 1996 The American Physical Society.
No description provided.
Differential and total cross sections for π+ absorption on Li6, leading to the pp+4Heg.s., pp+4He*, and pp+X final states, are presented at incident pion energies of 100 and 165 MeV. We conclude that most of the cross section is confined to the level of coplanarity expected from quasideuteron absorption in the nuclear environment and that the contributions of nonquasideuteron absorption mechanisms are small. © 1996 The American Physical Society.
No description provided.
No description provided.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$) at a median $Q~{2}$ of $10~{-4} \ \rm{GeV~2}$ has been studied with the ZEUS detector at HERA. The differential $\phi$ photoproduction cross section $d\sigma/dt$ has an exponential shape and has been determined in the kinematic range $0.1<|t|<0.5 \ \rm{GeV~2}$ and $60 < W < 80 \ \rm{GeV}$. An integrated cross section of $\sigma_{\gamma p \rightarrow \phi p} = 0.96 \pm 0.19~{+0.21}_{-0.18}$ $\rm{\mu b}$ has been obtained by extrapolating to {\it t} = 0. When compared to lower energy data, the results show a weak energy dependence of both $\sigma_{\gamma p \rightarrow \phi p}$ and the slope of the $t$ distribution. The $\phi$ decay angular distributions are consistent with $s$-channel helicity conservation. From lower energies to HERA energies, the features of $\phi$ photoproduction are compatible with those of a soft diffractive process.
.
Numerical values of dsig/dt distribution requested from authors.
Numerical values of dsig/dt distribution read from plot.
None
No description provided.
No description provided.
A search is described to detect charged Higgs bosons via the process Z 0 → H + H − , using data collected by the OPAL detector at LEP which correspond to an integrated luminosity of approximately 110 pb −1 . It is assumed that the H + boson decays only to τ + ν τ and c s final states. From the negative outcome of this search a lower bound of 44.1 GeV (95% CL) is derived for the mass of the charged Higgs boson.
No description provided.