212 interactions of 2.75-Bev protons have been observed in a hydrogen-filled diffusion cloud chamber. The data indicate an elastic cross section of 15 millibarns, with about 9 millibarns cross section for single pion production, 13 millibarns for double, and 4 for triple. There is one example of quadruple pion production. One definite example of the production of heavy unstable particles was observed, and two doubtful cases. The median elastic scattering angle was 19° in the c.m. system. Angle and momentum distributions for inelastic events are consistent with those observed at lower energies.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.
The mean from the NBD fit as a function of $N_{part}$ for 200 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
The mean from the NBD fit as a function of $N_{part}$ for 62.4 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.
>From a sample of $2722 \pm 78$ $\Lambda_c~+$ decaying to the $pK~-\pi~+$ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, $143 \pm 20$ $\Sigma_c~0$ and $122 \pm 18$ $\Sigma_c~{++}$ through their decays to $\Lambda_c~+ \pi~{\pm}$. The mass difference $M(\Sigma_c~0) - M(\Lambda_c~+$) is measured to be $(167.38\pm 0.29\pm 0.15)\,\mbox{MeV}$; for $M(\Sigma_c~{++}) - M(\Lambda_c~+)$, we find $(167.76\pm 0.29\pm0.15)\,\mbox{MeV}$. The rate of $\Lambda_c~+$ production from decays of the $\Sigma_c$ triplet is $(22\pm 2\pm 3)\,\mbox{\%}$ of the total $\Lambda_c~+$ production assuming equal rate of production from all three, as measured for $\Sigma_c~0$ and $\Sigma_c~{++}$. We do not observe a statistically significant $\Sigma_c$ baryon-antibaryon production asymmetry. The $x_F$ and $p_t~2$ spectra of $\Lambda_c~+$ from $\Sigma_c$ decays are observed to be similar to those for all $\Lambda_c~+$'s produced.
No description provided.
Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.
Additional normalisation error of 0.002 in the ratio.
Additional normalisation error of 0.002 in the ratio.
Additional normalisation error of 0.003 in the ratio.
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.
We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.
Longitudinal double-spin asymmetry $A_{LL}$ for inclusive jet production at $\sqrt{s_{NN}}$ = 200 GeV versus jet $p_{T}$. The points show results for particle jets with statistical error bars, while the curves show predictions for NLO parton jets from one global analysis [14]. The gray boxes indicate the systematic uncertainties on the measured $A_{LL}$ values (vertical) and in the corrections to the measured jet $p_{T}$ and the conversion between particle jet and NLO parton jet $p_{T}$ (horizontal).
We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The Multi-Chain Model can provide a good description of the net baryon density in d + Au collisions at RHIC, and the derived parameters of the model agree with those from nuclear collisions at lower energies.
$\overline{\Lambda}/\Lambda$ ratio and net $\Lambda$ and $\overline{\Lambda}$ yields as a function of collision centrality on both the deuteron (left) and the gold side (right). On the deuteron side, centrality is expressed by the number of collisions per deuteron participant, while on the gold side the number of Au participants is chosen. Only statistical errors are shown. The increase in baryon number transport with centrality, shown by the net $\Lambda$ yield, is matched by the increase of $\overline{\Lambda}$-$\Lambda$ pair production, thus keeping the $\overline{\Lambda}/\Lambda$ ratio constant over a wide centrality range.
$\overline{\Lambda}/\Lambda$ ratio and net $\Lambda$ and $\overline{\Lambda}$ yields as a function of collision centrality on both the deuteron (left) and the gold side (right). On the deuteron side, centrality is expressed by the number of collisions per deuteron participant, while on the gold side the number of Au participants is chosen. Only statistical errors are shown. The increase in baryon number transport with centrality, shown by the net $\Lambda$ yield, is matched by the increase of $\overline{\Lambda}$-$\Lambda$ pair production, thus keeping the $\overline{\Lambda}/\Lambda$ ratio constant over a wide centrality range.
$\overline{\Lambda}/\Lambda$ ratio and net $\Lambda$ and $\overline{\Lambda}$ yields as a function of collision centrality on both the deuteron (left) and the gold side (right). On the deuteron side, centrality is expressed by the number of collisions per deuteron participant, while on the gold side the number of Au participants is chosen. Only statistical errors are shown. The increase in baryon number transport with centrality, shown by the net $\Lambda$ yield, is matched by the increase of $\overline{\Lambda}$-$\Lambda$ pair production, thus keeping the $\overline{\Lambda}/\Lambda$ ratio constant over a wide centrality range.