Date

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

31 data tables

Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

More…

Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 081802, 2022.
Inspire Record 2035644 DOI 10.17182/hepdata.114358

A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of 138 fb$^{-1}$. No deviation from the background-only hypothesis is observed. A 95% confidence level upper limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-coupling, $\kappa_\lambda$, and of the coupling of two Higgs bosons to two vector bosons, $\kappa_\mathrm{2V}$. The observed (expected) allowed intervals at the 95% confidence level are $-$2.3 $\lt$ $\kappa_\lambda$ $\lt$ 9.4 ($-$5.0 $\lt$ $\kappa_\lambda$ $\lt$ 12.0) and $-$0.1 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.2 ($-$0.4 $\lt$ $\kappa_\mathrm{2V}$ $\lt$ 2.5). These are the most stringent observed constraints to date on the HH production cross section and on the $\kappa_\mathrm{2V}$ coupling.

2 data tables

Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{\lambda}$ modifier

Observed and expected 95% CL upper limits on cross section as a function of $\kappa_{2V}$ modifier


Version 2
Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 112007, 2022.
Inspire Record 2034279 DOI 10.17182/hepdata.110691

An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.

288 data tables

The minimum lepton $\mathrm{p_{T}}$ (GeV) distribution in 3L MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

The $\mathrm{S_{T}}$ (GeV) distribution in 3L WZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

The $\mathrm{DR_{min}}$ distribution in 3L Z$\mathrm{\gamma}$ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.

More…

Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s}=510$ GeV in $\vec{p}+\vec{p}$ Collisions

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.Lett. 130 (2023) 251901, 2023.
Inspire Record 2033856 DOI 10.17182/hepdata.129088

We present measurements of the cross section and double-helicity asymmetry $A_{LL}$ of direct-photon production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV. The measurements have been performed at midrapidity ($|\eta|<0.25$) with the PHENIX detector at the Relativistic Heavy Ion Collider. At relativistic energies, direct photons are dominantly produced from the initial quark-gluon hard scattering and do not interact via the strong force at leading order. Therefore, at $\sqrt{s}=510$ GeV, where leading-order-effects dominate, these measurements provide clean and direct access to the gluon helicity in the polarized proton in the gluon-momentum-fraction range $0.02

2 data tables

Cross sections for inclusive and isolated direct photons as a function of $p_T$. Not shown are 10% absolute luminosity uncertainties.

Double helicity asymmetry $A_{LL}$ $vs$ $p_{T}$ for isolated direct-photon production in polarized $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV at midrapidity. Not shown are $3.9 \times 10^{-4}$ shift uncertainty from relative luminosity and 6.6% scale uncertainty from polarization.


Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature Phys. 18 (2022) 1329-1334, 2022.
Inspire Record 2032090 DOI 10.17182/hepdata.127288

Since the discovery of the Higgs boson in 2012, detailed studies of its properties have been ongoing. Besides its mass, its width - related to its lifetime - is an important parameter. One way to determine this quantity is by measuring its off-shell production, where the Higgs boson mass is far away from its nominal value, and relating it to its on-shell production, where the mass is close to the nominal value. Here, we report evidence for such off-shell contributions to the production cross section of two Z bosons with data from the CMS experiment at the CERN Large Hadron Collider. We constrain the total rate of the off-shell Higgs boson contribution beyond the Z boson pair production threshold, relative to its standard model expectation, to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell contribution is excluded at a $p$-value of 0.0003 (3.6 standard deviations). We measure the width of the Higgs boson as $\Gamma_{\mathrm{H}}$ = 3.2 $_{-1.7}^{+2.4}$ MeV, in agreement with the standard model expectation of 4.1 MeV. In addition, we set constraints on anomalous Higgs boson couplings to W and Z boson pairs.

47 data tables

GGsm vs -2dNLL (SM-like (f_{ai}=0) observed)

GGsm vs -2dNLL (f_{a2} (u) observed)

GGsm vs -2dNLL (f_{a3} (u) observed)

More…

Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p$ $+$ $p$, $p$ $+$ Al, and $p$ $+$ Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.C 105 (2022) 064912, 2022.
Inspire Record 2029951 DOI 10.17182/hepdata.130200

Suppression of the $J/\psi$ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the $\psi(2S)$ state in $p/d$ $+$ $A$ collisions suggested the presence of final-state effects. Results of $J/\psi$ and $\psi(2S)$ measurements in the dimuon decay channel are presented here for $p$ $+$ $p$, $p$ $+$Al, and $p$ $+$Au collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. The results are predominantly shown in the form of the nuclear-modification factor, $R_{pA}$, the ratio of the $\psi(2S)$ invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in $p$ $+$ $p$ collisions. Measurements of the $J/\psi$ and $\psi(2S)$ nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large-Hadron-Collider energies.

12 data tables

PSI(2S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI(1S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

PSI(2S)-->MU+MU- nuclear modification in p+Al collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Multiplicity dependence of charged-particle jet production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 514, 2022.
Inspire Record 2026265 DOI 10.17182/hepdata.130653

The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $\sqrt{s} = 13\ \mathrm{TeV}$ is studied for the first time. Jets are reconstructed from charged particles using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R$ varying from $0.2$ to $0.7$. The jets are measured in the pseudorapidity range $|\eta_{\rm jet}|< 0.9-R$ and in the transverse momentum range $5

9 data tables

Inclusive charged-particle jet cross sections in pp collisions at $\sqrt{s}$ = 13 TeV using the anti-kT algorithm for different jet resolution parameters R from 0.2 to 0.7, with UE subtraction. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as solid boxes around the data points.

Ratio of charged-particle jet cross section for resolution parameter R = 0.2 to other radii R = X, with X ranging from 0.3 to 0.7, after UE subtraction. Data are compared with LO (PYTHIA) and NLO (POWHEG+PYTHIA8) predictions as shown in the bottom panels. The systematic uncertainties of the cross section ratios from data are indicated by solid boxes around data points in the upper panel and shaded bands around unity in the mid and lower panels. No uncertainties are shown for theoretical predictions for better visibility.

Charged-particle jet yields in different V0M multiplicity percentile intervals for resolution parameters R varied from 0.2 to 0.7 in pp collisions at s = 13 TeV. Statistical and total systematic uncertainties are shown as vertical error bars and boxes around the data points, respectively.

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Measurement of beauty production via non-prompt ${\rm D}^{0}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 12 (2022) 126, 2022.
Inspire Record 2025044 DOI 10.17182/hepdata.135987

The production of non-prompt ${\rm D}^{0}$ mesons from beauty-hadron decays was measured at midrapidity ($\left| y \right| < 0.5$) in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\rm NN}}=5.02~\mathrm{TeV}$ with the ALICE experiment at the LHC. Their nuclear modification factor ($R_{\rm AA}$), measured for the first time down to $p_{\rm T}=1~\mathrm{GeV}/c$ in the $0-10$% and $30-50$% centrality classes, indicates a significant suppression, up to a factor of about three, for $p_{\rm T} > 5~\mathrm{GeV}/c$ in the $0-10$% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronisation mechanism. The ratio of the non-prompt to prompt ${\rm D}^{0}$-meson $R_{\rm AA}$ is larger than unity for $p_{\rm T} > 4~\mathrm{GeV}/c$ in the $0-10$% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass.

3 data tables

Transverse-momentum-differential production yields of non-prompt $\rm D^0$ in central (0-10%) and mid-central (30-50%) Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV.

The nuclear modification factor of non-prompt $\rm D^0$ as a function of transverse momentum in central (0-10%) and mid-central (30-50%) Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV.

The non-prompt to prompt $\rm D^0$-meson nuclear modification factor ratio as a function of transverse momentum in central (0-10%) Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV.


Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 092007, 2022.
Inspire Record 2020585 DOI 10.17182/hepdata.114357

A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb$^{-1}$ of proton-proton collisions delivered by the LHC at $\sqrt{s} =$ 13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum, and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at $\sqrt{s} =$ 8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb$^{-1}$, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.

28 data tables

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for all three years of data taking, as well as their combination, assuming a SM Higgs boson with a mass of 125.38GeV.

The 90% CL upper limits on the spin-independent DM-nucleon scattering cross section in Higgs-portal models, assuming a scalar or fermion DM candidate.

Expected event yields in each $m_{jj}$ bin for the different background processes in the SR of the MTR category, in the 2017 and 2018 samples. The background yields and the corresponding uncertainties are obtained after performing a combined fit across all of the CRs and SR. The expected signal contributions for a Higgs boson, produced in the non-VBF and VBF modes, decaying to invisible particles with a branching fraction of $\mathcal{B}(\text{H} \to \text{inv}) = 1$, and the observed event yields are also reported.

More…