A set of 43 momentum spectra from the inclusive reaction np→pX 0 was measured with good statistical accuracy at 1.39, 1.56, 1.73 and 1.90 GeV/ c (about 10 spectra per incident momentum), with a neutron beam obtained by stripping deuterons. The final proton was analysed in an angular region of between 0° and 20° in the laboratory by a magnetic spectrometer.
THE INDICATED POSSIBLE SYSTEMATIC ERROR ARISES FROM EXTRAPOLATION OF D(SIG)/DT TO THETA = 90 DEG.
No description provided.
At the Bonn 2.5 GeV synchrotron the differential photoproduction cross section d σ /d t of φ mesons has been measured at a photon energy of 2.0 GeV at fibe different t values between 0.23 < | t | < 0.73 (GeV/ c ) 2 . The φ meson was detected by magnetic momentum analysis of both charged decay K mesons and by a time of flight and angle measurement of the coincident recoil proton. We found an exponential behaviour for the t dependence of the cross section. The measured slope of the exponential decrease was b = (4.01 ± 0.23) (GeV/ c −2 . This result, combined with previous measurements at higher energies, implies that the slope of the pomeron trajectory is compatible with zero. In addition the experiment yielded a value of the φ mass, m φ = (1019.4 ± 0.8) MeV and a value of the φ width, Γ = (4.4 ± 0.4) MeV.
No description provided.
We have measured ep, eπ+, and eπ− coincidences for scattered electrons in the range Q2=0.4 to 2.2 GeV2 and W=2 to 4 GeV. We find (a) that vector-meson production decreases with Q2 more rapidly than does the total virtual-photon-plus-proton cross section, more rapidly even than the prediction of simple vector dominance, (b) that the slope of the t distribution in ρ and ω production becomes flatter with increasing Q2 and seems to be at least approximately a function of the single variable xρ=(Q2+mρ2)2Mν, (c) that the fraction of final states containing a proton decreases with increasing Q2, (d) that in the central region of longitudinal momenta the inclusive π+ yield seems to increase relative to the π− yield as Q2 increases, and (e) that the average transverse momentum of π− is greater than of π+ in the central region of longitudinal momenta.
No description provided.
The data with (C=Q=RHO+OMEGA) are obtained by excluding the contribution from RHO and OMEGA production.
No description provided.
We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.
The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.
Final results are presented of the analysis of the elastic channel in an exposure of 40 000 pictures at each of the four incident K + momenta 2.11, 2.31, 2.5 and 2.72 GeV/ c taken in the 1.5 m British National Hydrogen Bubble Chamber at the 8 GeV/ c proton synchrotron at the Rutherford High Energy Laboratory. Differential cross sections are presented and the results are compared with other published data. A Legendre polynomial analysis requires partial waves up to G wave at all momenta. For the backward peak, visible at each momentum, the slope and the intercept are calculated. A comparison of the forward peak is made with extrapolations from Regge models fitted at higher momenta.
RESULTS DIFFER SLIGHTLY FROM THOSE PREVIOUSLY REPORTED IN J. M. BRUNET ET AL., NP B36, 45 (1972).
No description provided.
No description provided.
Electron-proton elastic-scattering cross sections have been measured at the Stanford Linear Accelerator Center for four-momentum transfers squared q 2 from 1.0 to 25.0 (GeVc)2. The electric (GEp) and magnetic (GMp) form factors of the proton were not separated, since angular distributions were not measured at each q 2. However, values for GMp were derived assuming various relations between GEp and GMp. Several theoretical models for the behavior of the proton magnetic form factor at high values of q 2 are compared with the data.
No description provided.
No description provided.
No description provided.
New formulae for constructing the pion photoproduction amplitude J from experimental data are presented. The phase of J is expressed in terms of its zeroes in the energy plane, the particle poles and a dispersion integral over the modulus of J , the latter being given, except for a finite unphysical interval, in terms of differential cross sections and recoil nucleon polarizations. For γ p→ π + n at t ≈−0.870 μ 2 , where the unphysical-region contribution vanishes, the zeroes are found approximately, so that the phase of J can be uniquely determined from the experimental data.
'1'.
'1'.
'1'.
Electron-proton elastic scattering cross sections have been measured at the Stanford Linear Accelerator Center at four-momentum transfers squared (q 2 ) of 1.0, 1.5, 2.0, 2.5and 3.75 (GeV/ c ) 2 . The angular distributions at q 2 = 2.5 and 3.75 (GeV/ c ) 2 are sufficient to provide values of the ratio G E / G M independent of the results from other laboratories. Our results are compatible with scaling, G E (q 2 ) = G M (q 2 )/ μ , within the experimental errors.
No description provided.
No description provided.
No description provided.