Measurement of the spin correlation parameters $A_{xx}$ and $A_{yy}$ for proton-proton scattering at 47.5 MeV

Nisimura, K. ; Hasegawa, T. ; Saito, T. ; et al.
Phys.Lett.B 30 (1969) 612-613, 1969.
Inspire Record 1389659 DOI 10.17182/hepdata.28866

A measurement of the spin correlation parameters A xx (90° cm) and A yy (90° cm) of 47.5 MeV proton-proton scattering has been performed by means of polarized beam and a polarized target.

1 data table

No description provided.


Measurement of the analyzing power A(N) in p p elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target.

Okada, H. ; Alekseev, I.G. ; Bravar, A. ; et al.
2006.
Inspire Record 707803 DOI 10.17182/hepdata.41834

A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.

1 data table

Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.


Measurement of spin correlation parameters A(NN), A(SS), and A(SL) at 2.1-GeV in proton proton elastic scattering.

Bauer, F. ; Bisplinghoff, J. ; Busser, K. ; et al.
Phys.Rev.Lett. 90 (2003) 142301, 2003.
Inspire Record 594512 DOI 10.17182/hepdata.31721

At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.

1 data table

Spin correlation parameters.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables

No description provided.

No description provided.

No description provided.

More…

Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table

No description provided.


Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table

Statistical errors only.


Analyzing Power Measurements of Coulomb Nuclear Interference With the Polarized Proton and Anti-proton Beams at 185 GeV/c

The E581/704 collaboration Akchurin, N. ; Carey, David C. ; Coleman, R. ; et al.
Phys.Lett.B 229 (1989) 299-303, 1989.
Inspire Record 280476 DOI 10.17182/hepdata.29782

The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.

3 data tables

No description provided.

Data from hydrocarbon target.

Data from hydrocarbon target.


Measurement of the Polarization of the Proton Proton Elastic Reaction at Small Scattering Angles Between 940-{MeV} and 2440-{MeV}

Dalla Torre-Colautti, S. ; Birsa, R. ; Bradamante, F. ; et al.
Nucl.Phys.A 505 (1989) 561-582, 1989.
Inspire Record 288841 DOI 10.17182/hepdata.36886

We have measured the asymmetry of elastic pp scattering at small scattering angles (30–100 mrad) in the Coulomb-nuclear interference region, using the polarized proton beam of Saturne II, a segmented scintillator active target, and two telescopes of multiwire proportional chambers. Results are given at four energies — 940, 1000, 1320 and 2440 MeV-and are compared with phase-shift calculations.

4 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF THE SPIN CORRELATION PARAMETERS A(OOSK) AND A(OOKK) IN P P ELASTIC SCATTERING AT 0.84-GEV AND 1-GEV

Lac, C.D. ; Ball, J. ; Bystricky, J. ; et al.
Nucl.Phys.B 297 (1988) 653-660, 1988.
Inspire Record 264165 DOI 10.17182/hepdata.33528

The spin correlation parameters A oosk and A ookk were measured at 0.834 and 0.995 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements were carried out in the angular region φ CM from 50° to ≃ 90°. The shape of the angular distribution A oosk (pp) = f ( θ CM ) changes rapidly from 0.8 to 1.0 GeV. The A ookk data points specify our previous measurements.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A(ll) at Small Momentum Transfers for the First Complete Determination of the Forward $p p$ Scattering Amplitude

Pauletta, G. ; Gazzaly, M. ; Tanaka, N. ; et al.
Phys.Lett.B 211 (1988) 19-23, 1988.
Inspire Record 252973 DOI 10.17182/hepdata.29911

The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.

2 data tables

No description provided.

No description provided.