The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Total cross section for P PBAR production at a mean centre-of-mass energy of 197 GeV.
The cross section as a function of W for ABS(COS(THETA)) < 0.6.
The differential cross section as a function of COS(THETA*) for three W ranges.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 \to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $\Delta$ resonance at these momentum transfers.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.27to 0.39 GeV**2.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.39to 0.65 GeV**2.
The measured virtual photon asymmetry (A1D+ETA*A2D) for the Q** region 0.65to 1.3 GeV**2.
Inclusive charged hadron production, e+e- -> e+e- h+- X, is studied using 414 pb-1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured as a function of the particle transverse momentum, pt, and pseudo-rapidity, eta. For p_t < 1.5 GeV, the data are well described by an exponential, typical of soft hadronic processes. For higher pt, the onset of perturbative QCD processes is observed. The pi+- production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.
Transverse momentum distribution for inclusive charged hadron production.
Transverse momentum distributions for charged pion and charged kaon production separately.
Transverse momentum distributions for charged pion production with different W (effective mass of the GAMMA GAMMA system) cuts.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$<Q^{2}<$1.5 GeV$^{2}$/c$^{2}$ using the CLAS detector at Jefferson Laboratory. The data shows resonant structures not visible in previous experiments. The comparison of our data to a phenomenological prediction using available information on $N^{*}$ and $\Delta$ states shows an evident discrepancy. A better description of the data is obtained either by a sizeable change of the properties of the $P_{13}$(1720) resonance or by introducing a new baryon state, not reported in published analyses.
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
The differential cross section, $d\sigma/dt$ for $\omega$ meson exclusive photoproduction on the proton above the resonance region ($2.6<W<2.9$ GeV) was measured up to a momentum transfer $-t = 5$ GeV$^2$ using the CLAS detector at Jefferson Laboratory. The $\omega$ channel was identified by detecting a proton and $\pi^+$ in the final state and using the missing mass technique. While the low momentum transfer region shows the typical diffractive pattern expected from Pomeron and Reggeon exchange, at large $-t$ the differential cross section has a flat behavior. This feature can be explained by introducing quark interchange processes in addition to the QCD-inspired two-gluon exchange.
Differential cross section in the energy region 3.20 to 3.38 GeV.
Differential cross section in the energy region 3.38 to 3.56 GeV.
Differential cross section in the energy region 3.56 to 3.74 GeV.
Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.
The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.
Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.
Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.
Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.
Cross sections for LAMBDA and SIGMA0 pair production in the mass region 2.23 to 3.5 GeV.
Cross sections for LAMBDA pair production as a function of the 2 photon invariant mass W. The average W of each bin is assumes a W**(-8) distribution.
Cross sections for SIGMA0 pair production as a function of the 2 photon invariant mass W. The average W of each bin is assumes a W**(-8) distribution.
Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV < P_T < 12 GeV and |eta| < 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.
Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.
Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.
The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.
Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8 GeV couples to the ηN channel.
Cross sections for photon energies 0.775 to 0.925 GeV.
Cross sections for photon energies 0.975 to 1.125 GeV.
Cross sections for photon energies 1.175 to 1.325 GeV.