Systematic measurements of π− elastic scattering on C12 above the Δ-resonance region are reported. The differential cross sections were measured at 610, 710, 790, and 895 MeV/c over an angular range from 5° to 50°. The obtained data were compared with the first-order optical potential model. In the forward region, agreement with the calculation increases with the incident momentum. In the backward region, however, the calculation underestimates the data. The total cross section was extracted, and its energy dependence shows that the effect of Fermi averaging is important.
No description provided.
No description provided.
No description provided.
A spectroscopic study of the CΛ12 hypernucleus by the (π+, K+) reaction has been performed using a new superconducting kaon spectrometer (INS-SKS) at the KEK 12 GeV Proton Synchrotron with an energy resolution of 2 MeV (FWHM). In addition to two prominent peaks which correspond to the s and p orbitals of a Λ hyperon, for the first time two smaller peaks were clearly observed at excitation energies of 2.6 and 6.9 MeV. These two peaks are interpreted as states where the C11 excited core and a Λ hyperon in the s orbit are weakly coupled. The excitation energies and the cross sections of these peaks provide information on the ΛN interaction.
No description provided.
The polarization of quasifree Λ hyperons produced by the (π+K+) reaction on C12 and on the deuteron was measured for the first time. The asymmetry of pions from weak decay of the Λ hyperon was used to determine the polarization. The polarization for the deuterium target was found to be consistent with that for the elementary n(π+,K+)Λ reaction. The polarization of the Λ produced by the quasifree process from C12 is consistent with that for the elementary reaction, which demonstrates that the spin characteristics of the elementary reaction are not modified by the nuclear medium.
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
Secondary beams of 3 He, 4 He, 6 He, and 8 He were produced through the projectile fragmentation of an 800 MeV/nucleon 11 B primary beam. Interaction cross sections ( σ I ) of all He isotopes of 790 MeV/nucleon on Be, C, and Al targets were measured by a transmission-type experiment. The interaction nuclear radii of He isotopes R I ( He ) = ( σ I π ) 1 2 − R I ( T ) where R I ( T ) is the radius of the target nucleus, have been deduced to be R I ( 3 He ) = 1.59 ± 0.06 fm , R I ( 4 He ) = 1.40 ± 0.05 fm , R I ( 6 He ) = 2.21 ± 0.06 fm , and R I ( 8 He ) = 2.52 ± 0.06 fm .
No description provided.
The photoproduction process of neutral kaons on a liquid deuterium target is investigated near the threshold region, Egamma = 0.8-1.1 GeV. K0 events are reconstructed from positive and negative pions, and differential cross sections are derived. Experimental momentum spectra are compared with those calculated in the spectator model using a realistic deuteron wave function. Elementary amplitudes as given by recent isobar models and a simple phenomenological model are used to study the effect of the new data on the angular behavior of the elementary cross section. The data favor a backward-peaked angular distribution of the elementary n(gamma,K0)Lambda process, which provides additional constraints on current models of kaon photoproduction. The present study demonstrates that the n(gamma,K0)Lambda reaction can provide key information on the mechanism of the photoproduction of strangeness.
Inclusive momentum spectra for K0 photoproduction.. Data read from plots.
Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Interaction cross sections (σI) for all known Li isotopes (Li6-Li11) and Be7, Be9, and Be10 on targets Be, C, and Al have been measured at 790 MeV/nucleon. Root mean square radii of these isotopes as well as He isotopes have been deduced from the σI by a Glauber-type calculation. Appreciable differences of radii among isobars (He6-Li6, He8-Li8, and Li9-Be9) have been observed for the first time. The nucleus Li11 showed a remarkably large radius suggesting a large deformation or a long tail in the matter distribution.
No description provided.