Using data obtained with EHS equipped with the Rapid Cycling Bubble Chamber (RCBC) exposed to a proton beam of 360 GeV/c, we calculate topological cross sections. We present in great detail the procedure and the techniques used to correct raw data. Finally, we give multiplicity moments and multiplicity correlations and we compare the values obtained in our experiment, together with data at other energies, with different models.
No description provided.
No description provided.
No description provided.
Sixty-two charm events have been observed in an exposure of the SLAC Hybrid Facility toa backward sacttered laser beam. Based on 22 neutral and 21 charged decays we have measured the charmed-meson lifetimes to be τD0=(6.8−1.8+2.3)×10−13 sec, τD±=(7.4−2.0+2.3)×10−13 sec and their ratio τD±τD0=1.1−0.3+0.6. The inclusive charm cross section at a photon energy of 20 GeV has been measured to be 56−23+24 nb. Evidence is presented for a non-DD¯ component to charm production, consistent with (35±20)% Λc+ production and some D*± production. We have found no unambiguous F decays.
No description provided.
Inclusive and semi-inclusive cross sections and distributions of γ's and π0's inK+p interactions at 70 GeV/c are presented. The results are compared to other experiments and to the Lund model for low-pT hadron collisions.
No description provided.
No description provided.
No description provided.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
No description provided.
The total cross section difference Δα L (pp) for proton-proton scattering with beam and target polarized longitudinally parallel and antiparallel, respectively, has been measured using the polarized proton beam from SATURNE II and a frozen spin polarized proton target. The beam polarization was reversed from pulse to pulse, and at each energy Δα L was measured for both signs of target polarization. The data below 800 MeV confirm the previously observed structures. The cross section difference is found to change by 8.0 ± 0.5 mb between 520 MeV and 760 MeV. At the higher energies the results show no indication for similar structures or for a change of the sign of Δα L .
ERRORS INCLUDE UNCERTAINTY IN THE BEAM POLARIZATION.
The x dependence of the longitudinal structure function F L was determined with the CHARM neutrino detector exposed to neutrino and antineutrino wide-band beams of the CERN 400 GeV SPS. The results show a clear deviation from the Callan-Gross relation. The amount and the x dependence of this deviation are in agreement with the contribution coming from a finite transverse momentum of the partons in the nucleon if both the intrinsc and perturbative QCD terms are taken into account.
VALUES OF Q**2 FOR EACH POINT IN THE TABLE ARE:- 0.76,3.0,9.3,16.6,18.9.
An exposure of BEBC equipped with the hydrogen-filled TST to the v μ wide band beam at the CERN SPS has been used to study v μ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R p v = 0.33 ± 0.04 . When combined with the value of R p v previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.24 −0.08 +0.06 and ρ = 1.07 −0.08 +0.06 . Fixing the parameter ρ = 1 yields sin 2 θ W = 0.18 ± 0.04.
No description provided.
New data are presented on the charged multiplicity distribution for non single-diffractive events produced in pp̄ interactions at a CM energy s = 540 GeV . The distribution in the full pseudorapidity range is compared with data from the ISR. Using the scaling variable z = n 〈n〉 a change of shape is observed. The effect is manifested as an increase from 2% to 6% in the proportion of high multiplicity ( z > 2) events. For the central pseudorapidity range, | η | ⪅ 1.5, scaling is approximately valid up to s = 540 GeV .
THE SCALING VARIABLE Z IS N/MEAN(N). THE ERRORS ARE HIGHLY CORRELATED AND ARE BASED ON THE SQUARE ROOT OF THE NUMBER OF EVENTS IN THE BIN. IN THE CASE OF MULTIPLICITIES 2,4, AND 6, ADDITIONAL SYSTEMATIC ERRORS HAVE BEEN INCLUDED. ABOVE MULTIPLICITY 96 BINS HAVE BEEN COMBINED - THE VALUE IN THE TABLE IS THE AVERAGE OVER THE RANGE - NOT THE SUM. NOTE ALSO THAT IN FIG. 1 THE "Y-VALUE" IS MULTIPLIED BY THE MEAN MULTIPLICITY (29.1).
CHARGED MULTIPLICITY (NON-CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.5.
CHARGED MULTIPLICITY (NON CORRECTED) FOR EVENTS WHICH HAVE AT LEAST ONE TRACK WITH ABS(ETARAP) <1.3.
The parity violation induced by weak neutral currents is measured in a ΔF =1 hyperfine component of the 6S–7S transition of the Cs atom. The measured value ( Im E PV 1 β ) = −1.78 ± 0.26 (statistical rms deviation) ±0.12 (systematic uncertainty) mV/cm, agrees with our previous measurement in a ΔF =0 component, and constitutes an important cross-check. Our result excludes a parity violation induced by a purely axial hadronic neutral current.
(7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.