Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
We compare the particle flow in the event plane of three-jet qq¯g (quark-antiquark-gluon) events with the particle flow in radiative annihilation events qq¯γ (quark-antiquark-photon) for similar kinematic configurations. In the angular region between quark and antiquark jet, we find a significant decrease in particle density for qq¯g as compared to qq¯γ. This effect is predicted in QCD as a result of destructive interference between soft-gluon radiation from quark, antiquark, and hard gluon.
No description provided.
No description provided.
We have made a detailed comparison of the charged-particle flow in three-jet events (e+e−→qq¯g) and radiative two-jet events (e+e−→qq¯γ) from e+e− annihilation at Ec.m.=29 GeV. Accurate comparisons can be made because these two event types have similar topologies. In the angular region between the quark and antiquark jets, we observe substantially fewer charged tracks in the two-jet events than in the radiative three-jet events.
No description provided.
No description provided.
No description provided.
Total and differential cross sections for exclusive production of proton-antiproton pairs in photon-photon collisions have been measured using the JADE detector at PETRA. The total cross section in the CM angular |cos θ ∗ | < 0.6 reaches a maximum value of 3.8 nb for a γγ invariant mass of W γγ = 2.25 GeV, and decreases rapidly for higher values of W γγ . In the range 2.0 GeV < W γγ < 2.6 GeV the angular distribution is not isotopic. The nucleons are preferentially emitted at large angles to the collision axis.
Data read off graph.
Data read off graph.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
In diffractive photoproduction ofηπ+π−, the two-body substatesηρ0 andA2π are found to contribute significantly to the cross-section forηπ+π− masses below 2.4 GeV. From a spin-parity analysis the branching ratio, ρ′(1600)→ηρ/ρ′(1600)→, is determined to be <0.02 at the 68.3% confidence level. TheA2π component shows an enhancement around 1.7 GeV. The spin-parity analysis indicates a probable contribution to this signal from exclusive photoproduction of theg(1690).
No description provided.
Not corrected for 35% background under the eta --> gamma gamma peak.
Not corrected for 35% background under the ETA --> GAMMA GAMMA peak.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
No description provided.
No description provided.
We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) ine+e− annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations toOα(s2). Non-perturbative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (ɛ, δ) cuts, and found to be small. The extracted values of\(\Lambda _{\overline {MS} }\) lie between 100 and 300 MeV.
Corrected energy-energy correlation data.
CORRECTED FORWARD-BACKWARD ASYMMETRY.
We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.
Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.
Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.
No description provided.
We have studied the production of prompt muons in hadronic events from e+e− annihilation at a center-of-mass energy of 29 GeV with the PEP4-TPC (Time Projection Chamber) detector. The muon p and pt distributions are well described by a combination of bottom- and charm-quark decays, with fitted semimuonic branching fractions of (15.2±1.9±1.2)% and (6.9±1.1±1.1)%, respectively. The muon spectra imply hard fragmentation functions for both b and c quarks, with 〈z(b quark)〉=0.80±0.05±0.05 and 〈z(c quark)〉=0.60±0.06±0.04. We derive neutral-current axial-vector couplings of a(b quark)=-0.9±1.1±0.3 and a(c quark)=1.5±1.5±0.5 from the forward-backward asymmetries.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT < 1 GeV/c.
PT is the transverse momentum of the MUON relative to the event thrust axis. At this table MUON is from JET and its PT > 1 GeV/c.