We present a measurement of the polarization observed for bottomonium states produced in p-Cu collisions at sqrt(s)=38.8 GeV. The angular distribution of the decay dimuons of the Upsilon(1S) state show no polarization at small xF and pT but significant positive transverse production polarization for either pT > 1.8 GeV/c or for xF > 0.35. The Upsilon(2S+3S) unresolved states show a large transverse production polarization at all values of xF and pT measured. These observations are compared with an NRQCD calculation that predicts a transverse polarization in bottomonium production arising from quark-antiquark fusion and gluon-gluon fusion diagrams.
The observed polarization in the Drell-Yan sideband region as a function of PT. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the Drell-Yan sideband region as a function of XL. There is an additional systematic uncertainty of 0.02 in the polarization measurements.
The observed polarization in the UPSILON(1S) region as a function of PT. There is an additional systematic error of 0.06 in the polarization measurements.
A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus.
Ratios of measured cross sections per nucleon for Drell Yan events versus di-muon mass.
Ratios of measured cross sections per nucleon for Drell Yan events versus X2.
Ratios of measured cross sections per nucleon for Drell Yan events versus XL.
A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data, the ratio of anti-down (dbar) to anti-up (ubar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio dbar/ubar, showing substantial enhancement of dbar with respect to ubar for x<0.2. This result is in fair agreement with recent parton distribution parameterizations of the sea. For x>0.2, the observed dbar/ubar ratio is much nearer unity than given by the parameterizations.
No description provided.
We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the DEUT target.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the P target.
Differential cross section per nucleon as a function of transverse momentum for UPSILON production on the DEUT target.
Measurements of the suppression of the yield per nucleon of J/Psi and Psi' production for 800 GeV/c protons incident on heavy relative to light nuclear targets have been made with very broad coverage in xF and pT. The observed suppression is smallest at xF values of 0.25 and below and increases at larger values of xF. It is also strongest at small pT. Substantial differences between the Psi' and J/Psi are observed for the first time in p-A collisions. The suppression for the Psi' is stronger than that for the J/Psi for xF near zero, but becomes comparable to that for the J/Psi for xF > 0.6.
Target Atomic Mass dependence expressed as the POWER for J/PSI production. X2 is the momentum fraction of the struck quark.
Target Atomic Mass dependence expressed as the POWER for PSIPRIME production. X2 is the momentum fraction of the struck quark.
PT dependence of ALPHA for J/PSI and PSIPRIME production for the small-XF dataset.
The Fermilab E866/NuSea Collaboration has measured the Drell-Yan dimuon cross sections in 800 GeV/$c$ $pp$ and $pd$ collisions. This represents the first measurement of the Drell-Yan cross section in $pp$ collisions over a broad kinematic region and the most extensive study to date of the Drell-Yan cross section in $pd$ collisions. The results indicate that recent global parton distribution fits provide a good description of the light antiquark sea in the nucleon over the Bjorken-$x$ range $0.03 \lesssim x < 0.15$, but overestimate the valence quark distributions as $x \to 1$.
Measurment of the scaling form of the MU+ MU- cross section in the XL range-0.05 to 0.05 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.05 to 0.10 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.10 to 0.15 from the hydrogen target.
Measurements of the ratio of Drell-Yan yields from an 800 \rm{GeV/c} proton beam incident on liquid hydrogen and deuterium targets are reported. Approximately 360,000 Drell-Yan muon pairs remained after all cuts on the data. From these data, the ratio of anti-down ($\bar{d}$) to anti-up ($\bar{u}$) quark distributions in the proton sea is determined over a wide range in Bjorken-$x$. These results confirm previous measurements by E866 and extend them to lower $x$. From these data, $(\bar{d}-\bar{u})$ and $\int(\bar{d}-\bar{u})dx$ are evaluated for $0.015<x<0.35$. These results are compared with parameterizations of various parton distribution functions, models and experimental results from NA51, NMC, and HERMES.
Cross section ratio for the high mass data set. Additional systematic error is 0.97 PCT for this data set.
Cross section ratio for the intermediate mass data set. Additional systematic error is 0.94 PCT for this data set.
Cross section ratio for the low mass data set. Additional systematic error is 0.87 PCT for this data set.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one pseudoscalar decays into a $b$-quark pair and the other decays into a $\tau$-lepton pair, in the mass range $12\leq m_{a}\leq 60$ GeV. The analysis uses $pp$ collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 ${fb}^{-1}$. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross-section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into $b\bar{b}\tau^+\tau^-$, $\mathcal{B}(H \rightarrow aa \rightarrow b\bar{b}\tau^+\tau^-)$, between 2.2% and 3.9% depending on the pseudoscalar mass.
Visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and distribution for signal and the expected background. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
Sum of the transverse mass $\Sigma m_T$ distributions for signal and the expected background. Events with high $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and high $\Sigma m_T$ are included in the $t\bar{t}$ region. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.