An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.
No description provided.
No description provided.
No description provided.
Double differential cross sections have been measured for pi+ and K+ emitted around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15 GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an alpha projectile instead of a deuteron whereas the K+ yield increases by a factor of about 4. According to transport calculations, the K+ enhancement depends both on the number of hadron-hadron collisions and on the energy available in those collisions: their center-of-mass energy increases with increasing number of projectile nucleons.
The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is PI+ kinectic energy in the nucleon-nucleon center of mass frame.
The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is K+ kinectic energy in the nucleon-nucleon center of mass frame.
The tensor analyzing power T 20 for the reaction d ↑ + 12 C → π ± (0°) + X has been measured with a polarized deuteron beam from 6.2 to 9.0 GeV/ c at a pion momentum3.0 GeV/ c . This experiment is focused on “cumulatively produced pions”, which are produced beyond the kinematically allowed limit for free nucleon-nucleon collisions. The measured values of T 20 turn out to be close to zero. They are in disagreement with the results of our impulse approximation calculation which is based on a single NN → πNN interaction and takes into account the internal motion of nucleons in the deuteron. Possible explanations of the result are discussed.
No description provided.
No description provided.
No description provided.
None
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.