Date

Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

20 data tables match query

The average $\pi^{0}$ transverse momenta for the rapidity range $8.8<y<10.6$ in $p+p$ collisions at $\sqrt{s}=2.76$ and 7 TeV and for the rapidity range $-8.8>y_\rm{lab}>-10.6$ in $p+\rm{Pb}$ collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. The rapidity values for $p+\rm{Pb}$ collisions are in the detector reference frame and must be multiplied by -1.

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

0 data tables match query

Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 092301, 2018.
Inspire Record 1626103 DOI 10.17182/hepdata.79667

The azimuthal anisotropy Fourier coefficients ($v_n$) in 8.16 TeV pPb data are extracted via long-range two-particle correlations as a function of event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, $v_n$ correlations are measured for the first time in pp and pPb collisions. The $v_2$ and $v_4$ coefficients are found to be positively correlated in all collision systems. For high multiplicity pPb collisions an anticorrelation of $v_2$ and $v_3$ is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in pPb and PbPb collisions in the measured multiplicity range.

9 data tables match query

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{4}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pp collisions at $\sqrt{s}$ = 13.00 TeV. Results after low-multiplicity subtraction are denoted as $v_{4}^{sub}$.

More…

Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 7 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 345-354, 2010.
Inspire Record 852264 DOI 10.17182/hepdata.54795

The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy $\sqrt{s} = 7$ TeV, were measured in the central pseudorapidity region |$\eta$| < 1. Comparisons are made with previous measurements at $\sqrt{s}$ = 0.9 TeV and 2.36 TeV. At $\sqrt{s}$ = 7 TeV, for events with at least one charged particle in |$\eta$| < 1, we obtain dNch/deta = 6.01 $\pm$ 0.01 (stat.) $^{+0.20}_{-0.12}$ (syst.). This corresponds to an increase of 57.6% $\pm$ 0.4% (stat.) $^{+3.6}_{-1.8}$% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

1 data table match query

Multiplicity distribution normalized to the bin width in the pseudorapidity region -1.0 to 1.0 for INEL>0 collisions at a centre-of-mass energy of 7000 GeV. See the paper arXiv:1004.3034 for the lower energy data. Note that the statistical as well as the systematic uncertainties are strongly correlated between neighbouring points. See text of paper for details.


Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 97 (2018) 044912, 2018.
Inspire Record 1614482 DOI 10.17182/hepdata.82637

Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum ($p_\mathrm{t}$) difference, and the $p_\mathrm{t}$ average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a $v_2$-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the $v_2$-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

93 data tables match query

Three-particle correlation with respect to the 2nd order event plane from Pb-going side in pPb collisions.

Three-particle correlation with respect to the 2nd order event plane from p-going side in pPb collisions.

Three-particle correlation with respect to the 2nd order event plane in PbPb collisions.

More…

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

39 data tables match query

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

0 data tables match query

Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

1 data table match query

The elliptic flow per constituent quark after correcting back-to-back jet contribution, $v_{2}^{sub}/n_{q}$, for $\Xi^{-}$ as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ in PbPb collision at 5.02 TeV.


Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 079, 2011.
Inspire Record 879315 DOI 10.17182/hepdata.57909

Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

1 data table match query

Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 2.4 and PT > 500 MeV at a centre-of-mass energy of 7000 GeV.


Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

1 data table match query

The $R_{2}(Q)$ correlation function measured at $7\ TeV$ using unlike-charge particle reference sample for different $k_{T}$ intervals within multiplicity interval $n_{ch} = 10-24$. The error bars represents only the statistical uncertainties.