Showing 10 of 466 results
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of exclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (2nd jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (3rd jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (4th jet) [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (5th jet) [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of leading jet rapidity with at least one jet in the event.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 2nd jet rapidity with at least two jets in the event.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DPhi(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of Dy(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DR(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of m(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 3rd jet rapidity with at least three jets in the event.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 4th jet rapidity with at least four jets in the event.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 5th jet rapidity with at least five jets in the event.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\eta$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading muon $\phi$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet azimuth. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet mass. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet constituent multiplicity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_1$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_2$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of subleading charged particle jet $\tau_3$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading charged particle jet $\tau_{21}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of $\Delta R$ between the leading charged particle jet and the dilepton system. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Searches for scalar leptoquarks pair-produced in proton-proton collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb$^{-1}$ is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first- and second-generation leptoquarks, respectively, as postulated in the minimal Buchm\"uller-R\"uckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the $Z\rightarrow ee$, $Z\rightarrow\mu\mu$ and $t\bar{t}$ processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the $Z\rightarrow\ell\ell$ measurements in observables sensitive to jet energies disagree with the data.
Inclusive cross-section and uncertainty from each source, for the dominant process in the each measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of leading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of subleading $p_{T}^j$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_0,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $min\Delta\phi(j_1,l)$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\eta_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $\Delta\phi_{ll}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $m_{jj}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{ee}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{\mu\mu}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $p_{T}^{e\mu}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $H_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $ee jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the $e\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $eejj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $\mu\mu jj$ measurement region.
Differential cross-section and uncertainty from each source, as a function of $S_{T}$ for the dominant process in the extreme $e\mu jj$ measurement region.
Expected and observed 95% CL lower limits on first- and second-generation leptoquark masses for different values of $\beta$.
Event yields in the dimuon channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Event yields in the dielectron channel control regions with total uncertainties. The observed number of events is given in the first row. The background event numbers as obtained from the fit are shown together with the total uncertainties. The second row shows the total background expectation, the further rows show the breakdown into different background components.
Distribution of $m_{LQ}^{min}$ in the training region for the BDT for the $ee jj$ and $\mu\mu jj$ channels. Data are shown together with predicted total background expectation.
Distribution of $m_{LQ}^{T}$ in the training region for the BDT for the $e\nu jj$ and $\mu\nu jj$ channels. Data are shown together with predicted total background expectation.
The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).
Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.
Normalized differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\log(m_{bb}/p_\text{T})$, as a function of $\log(m_{bb}/p_\text{T})$ for $m_{bb}$ the invariant mass of the two b-jets.
The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Sphericity for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Sphericity for 5 lower limit values of leading particle PT.
Mean Values of Thrust, Thrust Minor and Sphericity verses Multiplicity.
Mean Values of Thrust, Thrust Minor and Sphericity verses charged particle PT scalar sum.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L low for each bin of the distribution in Meff. The table corresponds to Fig. 4(d). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L high for each bin of the distribution in Meff. The table corresponds to Fig. 4(e). The statistical and systematic uncertainties are combined for the predicted numbers.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The efficiencies are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The efficiencies are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The efficiencies are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into b s and gluinos decay into t stop (see Fig. 5d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The efficiencies are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The acceptances (in percent, %) are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The acceptances (in percent, %) are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The acceptances (in percent, %) are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The limits on observed cross section are calculated for all simplified models. The simplified models are for direct pair production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop)-20 GeV.
The signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Experimental uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Experimental uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Experimental uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Statistical uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Statistical uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Statistical uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W ^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The confidence levels are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluion), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The confidence levels are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the expected and observed values are given. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The confidence levels are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The confidence levels are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the expected and observed values are given.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The confidence levels are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, and mu>0.
An observation of electroweak $W^{\pm}Z$ production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of $W^{\pm}Z$ bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects is measured to be $\sigma_{WZjj\mathrm{-EW}} = 0.57 \; ^{+ 0.14} _{- 0.13} \,(\mathrm{stat.}) \; ^{+ 0.07} _{- 0.06} \,(\mathrm{syst.}) \; \mathrm{fb}$. Total and differential fiducial cross-sections of the sum of $W^\pm Z jj$ electroweak and strong productions for several kinematic observables are also measured.
Fiducial cross section of the electroweak $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.
Fiducial cross section of the $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.
Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, before the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total uncertainties are quoted.
Summary of the relative uncertainties in the measured fiducial cross section $\sigma^{\mathrm{fid}}_{W^\pm Z j j-EW}$ . The uncertainties are reported as percentages.
Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, after the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total correlated post-fit uncertainties are quoted.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Measured $W^{pm}Zjj$ differential cross-section in the VBS fiducial phase space. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds, pileup and luminosity. the last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded fiducial cross-section.
Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.
Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.
Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.
The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.
Correlation matrix between the fiducial cross sections for the four individual decay final states and the $ZZ^{*}$ normalisation factor.
Differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum $p_{T}^{4l}$ of the Higgs boson.
Differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{12}$ of the leading Z boson.
Differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass $m_{34}$ of the subleading Z boson.
Differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the rapidity $|y_{4l}|$ of the Higgs boson.
Differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $|\cos\theta^{*}|$ of the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{1}$ of the anti-lepton from the leading Z boson.
Differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the production angle $\cos\theta_{2}$ of the anti-lepton from the subleading Z boson.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons.
Differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi_{1}$ of the decay plane of the leading Z boson and the plane formed between its four-momentum and the z-axis.
Differential fiducial cross section for the jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the jet multiplicity $N_{jets}$.
Differential fiducial cross section for the inclusive jet multiplicity $N_{jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the number of b-quark initiated jets $N_{b-jets}$.
Differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet $p_{T}^{lead.jet}$ in events with at least one jet.
Differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the subleading jet $p_{T}^{sublead.jet}$ in events with at least two jets.
Differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the two highest-pT jets $m_{jj}$ in events with at least two jets.
Differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in pseudorapidity $\Delta\eta_{jj}$.
Differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the distance between the two highest-pT jets in $\phi$ $\Delta\phi_{jj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system, in events with at least one jet $p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 . Measured value in the last bin is un upper limit at 95% CL.
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus di-jet system, in events with at least two jets $p_{T}^{4ljj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus jet system in events with at least one jet $m_{4lj}$.
Differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the invariant mass of the four lepton plus di-jet system in events with at least two jets $m_{4ljj}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $ll\mu\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $llee$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass m12 vs. m34 in $ll\mu\mu$ and $llee$ final states.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $|y_{4l}|$ bins.
Differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section of the $p_{T}^{4l}$ distribution in $N_{jets}$ bins.
Differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for transverse momentum of the four lepton system vs. the transverse momentum of the four lepton plus jet system $p_{T}^{4l}$vs.$p_{T}^{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton plus jet system vs the invariant mass of the four lepton plus jet system $p_{T}^{4l}$vs.$m_{4lj}$.
Differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{l.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the four lepton vs the transverse momentum of the leading jet $p_{T}^{4l}$vs.$p_{T}^{lead.jet}$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the rapidity of the leading jet $p_{T}^{lead.jet}$vs.$|y^{lead.jet}|$.
Differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the transverse momentum of the leading jet vs the transverse momentum of the subleading jet $p_{T}^{lead.jet}$vs.$p_{T}^{sublead.jet}$.
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading Z boson mass $m_{12}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading Z boson mass $m_{12}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the subleading Z boson mass $m_{34}$ in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $2e2\mu$ and $2\mu2e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the azimuthal angle $\phi$ of the decay planes of the two reconstructed Z bosons in $4l$ and $2l2l$ final states.
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4\mu$ and $4e$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $2\mu2e$ and $2e2\mu$ final states. The measured cross sections are compared to predictions provided by NNLOPS + XH. NNLOPS is normalised to the N3LO total cross section with a K-factor = 1.1 .
Correlation matrix between the measured cross sections and the $ZZ^{*}$ background normalization corresponding to the differential fiducial cross section for the leading vs. subleading Z boson mass $m_{12}$vs.$m_{34}$ in $4l$ and $2l2l$ final states.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.