The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.
A search is presented for fractionally charged particles with charge below 1$e$, using their small energy loss in the tracking detector as a key variable to observe a signal. The analyzed data set corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s}$ = 13 TeV in 2016-2018 at the CERN LHC. This is the first search at the LHC for new particles with charges between $e/$3 and 0.9$e$, including an extension of previous results at a charge of 2$e/$3. Masses up to 640 GeV and charges as low as $e/$3 are excluded at 95% confidence level. These are the most stringent limits to date for the considered Drell-Yan-like production mode.
A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z$'$ boson couplings to a bb quark pair ($g_\mathrm{b}$), an sb quark pair ($g_\mathrm{b}\delta_\mathrm{bs}$), and any same-flavor charged lepton ($g_\ell$) or neutrino pair ($g_\nu$), with $\left|g_{\nu}\right| = \left|g_\ell\right|$. For a Z$'$ boson with a mass $m_{\mathrm{Z}'}$ = 350 GeV (2 TeV) and $\left|\delta_\mathrm{bs}\right|$$\lt$ 0.25, the majority of the parameter space with 0.0057 $\lt$$\left|g_\ell\right|$$\lt$ 0.35 (0.25 $\lt$$\left|g_\ell\right|$$\lt$ 0.43) and 0.0079 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.46 (0.34 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z$'$ model with parameters consistent with low-energy b $\to$ s$\ell\ell$ measurements. In this scenario, most of the allowed parameter space is excluded for a Z$'$ boson with 350 $\lt m_{\mathrm{Z}'}$ $\lt$ 500 GeV, while the constraints are less stringent for higher $m_{\mathrm{Z}'}$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.
A search for long-lived particles using final states including a displaced vertex with low-momentum tracks, large missing transverse momentum, and a jet from initial-state radiation is presented. This search uses proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC in 2017 and 2018, with a total integrated luminosity of 100 fb$^{-1}$. This analysis adopts specific supersymmetric (SUSY) coannihilation scenarios as benchmark signal models, characterized by a next-to-lightest SUSY particle (NLSP) with a mass difference of less than 25GeV relative to the lightest SUSY particle, assumed to be a bino-like neutralino. In the top squark ($\tilde{\mathrm{t}}$) NLSP model, the NLSP is a long-lived $\tilde{\mathrm{t}}$, while in the bino-wino NLSP scenario, the mass-degenerate NLSPs are a wino-like long-lived neutralino and a short-lived chargino. The search excludes top squarks with masses less than 400$-$1100 GeV and wino-like neutralinos with masses less than 220$-$550 GeV, depending on the signal parameters, including the mass difference, mass, and lifetime of the long-lived particle. It sets the most stringent limits to date for the $\tilde{\mathrm{t}}$ and bino-wino NLSP models.
A search for heavy neutral gauge bosons (Z') decaying into a pair of tau leptons is performed in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb$^{-1}$. The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z' production cross section and its branching fraction to tau lepton pairs for a range of Z' boson masses. For a narrow resonance in the sequential standard model scenario, a Z' boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search.
This paper presents a model-agnostic search for narrow resonances in the dijet final state in the mass range 1.8-6 TeV. The signal is assumed to produce jets with substructure atypical of jets initiated by light quarks or gluons, with minimal additional assumptions. Search regions are obtained by utilizing multivariate machine-learning methods to select jets with anomalous substructure. A collection of complementary anomaly detection methods - based on unsupervised, weakly supervised, and semisupervised algorithms - are used in order to maximize the sensitivity to unknown new physics signatures. These algorithms are applied to data corresponding to an integrated luminosity of 138 fb$^{-1}$, recorded by the CMS experiment at the LHC, at a center-of-mass energy of 13 TeV. No significant excesses above background expectations are seen. Exclusion limits are derived on the production cross section of benchmark signal models varying in resonance mass, jet mass, and jet substructure. Many of these signatures have not been previously sought, making several of the limits reported on the corresponding benchmark models the first ever. When compared to benchmark inclusive and substructure-based search strategies, the anomaly detection methods are found to significantly enhance the sensitivity to a variety of models.
We search for new massive scalar particles X and Y through the resonant process X $\to$ YH $\to$$\mathrm{b\bar{b}b\bar{b}}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.
A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp $\to$ p$\gamma\gamma$p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb$^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $\lvert\zeta_1\rvert$ $\lt$ 2.9 $\times$ 10$^{-13}$ GeV$^{-4}$ and $\lvert\zeta_2\rvert$ $\lt$ 6.0 $\times$ 10$^{-13}$ GeV$^{-4}$.
The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.