Semi-inclusive π0 multiplicity distributions for 2-14 charged prongs are obtained using a generating-function approach based on an expansion in terms of Mueller moments. The four-prong data require the explicit assumption of a two-component model. Under this assumption and the further assumption of no three-neutral-particle correlations, the total pion multiplicity is obtained. The total multiplicity shows peaking at even prongs, indicative of G-parity-conserving diffractive processes which dominate at lower multiplicities. The cross section for these processes is ∼4 mb.
TOTAL NO. EVENTS=21395.
Neutral-pion production in 250-GeV/c π−p interactions are studied using the Fermilab 15-ft bubble chamber. The mean number of neutral pions produced is 3.54±0.15 per inelastic collision and a fit to a linear dependence on the charged multiplicity gives 〈n0〉=1.30+0.56n−. The π0 transverse- and longitudinal-momentum distributions are obtained from the inclusive γ-ray data and compared with the distribution obtained from those π0's which have both decay γ rays converting in the bubble chamber.
PI0 MEAN MULTIPLICITY IS OBTAINED FROM SIG(PI0,BACKGROUND CORRECTED)=70.8+-8.3 MB. THE NON-CORRECTED BACKGROUD SIG(PI0)=75.7+-3.2 MB AND < PI0 >=3.54+-0.15.
We have measured the inclusive cross section for η production in e+e− interactions near charm threshold using the Crystal Ball detector. No pronounced structure in the energy dependence is observed. By comparing cross sections above and below charm threshold we obtain the limits (90% confidence limit): R(e+e−→FF¯X)RB(F→ηx)<0.15−0.32 (for Ec.m. from 4.0 to 4.5 GeV), RB(D→ηx)<0.13. Our results are inconsistent with a previous report of a large energy dependence of the η cross section ascribed to the crossing of the FF* and F*F* production thresholds.
Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
THE 4.028 GEV DATA ARE NOT INCLUDED IN THE 4.005-4.082 GEV BIN. Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
AT FIXED ENERGIES.
The charged-particle multiplicity distribution from 250-GeV/c π−p interactions in the Fermilab 15-ft bubble chamber is presented. The corrections to the raw data are described. Fits to these data along with other high-energy bubble-chamber data show that cluster models with two components—a low-multiplicity, diffractive component and a high-multiplicity, nondiffractive component—describe the data fairly well. The charged multiplicity of each cluster is found to be ∼2, while the number of clusters for each component grows linearly with ln(s). The multiplicity moments are consistent with other experiments. We find 〈nc〉=8.427±0.059, f2cc=8.66±0.11, 〈nc〉D=2.038±0.023. The total inelastic cross section is σI=21.42±0.50 mb.
No description provided.
We discuss a measurement of the differential cross section for the reaction KLp→KSp for incident momenta between 5 and 10 GeV/c and the |t| region 0.025 to 0.5 (GeV/c)2, carried out using the SLAC 15-in. rapid-cycling hydrogen bubble chamber triggered by the K0 spectrometer facility. This hybrid detector allowed measurement of the KL beam momentum, measurement of the recoil-proton momentum, and measurement of the decay position and momentum of the KS. Over this momentum region the ratio of the real to imaginary part of the forward-scattering amplitude was determined to be 0.93±0.24 and the phase of the forward-scattering amplitude was determined to be -(138±7)°. A fit to the forward differential cross section of the form dσdt∝p2α(t)−2 to our data together with previous measurements of the KLp→KSp differential cross section at this and lower momenta yielded an α(0)=0.39±0.10 for the dominant ω Regge trajectory. The value of α(0) as determined from the phase φ=−π[α(0)+1]2 is 0.54±0.11.
No description provided.
FORWARD CROSS SECTION AND OPTICAL THEOREM USED TO DETERMINE PHASE OF FORWARD AMPLITUDE. RE(AMP)/IM(AMP) IS REAL(AMP)/IMAG(AMP).
No description provided.