The polarization of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\Upsilon\to\mu^+\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\Upsilon)<30GeV/c$, and rapidity $2.2<y(\Upsilon)<4.5$. No large polarization is observed.
The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.
The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5
The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.
A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.
The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.
A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using $139~\text{fb}^{-1}$ of proton--proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be $67\pm 6$ fb, which is in agreement with the state-of-the-art Standard Model prediction of $64\pm 4$ fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be $58\pm 6$ pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.
The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.
Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.
Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a $t$-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb$^{-1}$ and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived.