Showing 10 of 20 results
We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
Global polarizations ($P$) of $\Lambda$ ($\bar{\Lambda}$) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the $\Lambda$ and $\bar{\Lambda}$ global polarizations ($\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0$). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance ($\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0$) between left- and right-handed $\Lambda$ ($\bar{\Lambda}$) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator ($\Delta\gamma$) and parity-odd azimuthal harmonic observable ($\Delta a_{1}$). Measurements of $\Delta P$, $\Delta\gamma$, and $\Delta a_{1}$ have not led to definitive conclusions concerning the CME or the magnetic field, and $\Delta n$ has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between $\Delta n$ and $\Delta a_{1}$, which is sensitive to chirality fluctuations, and correlation between $\Delta P$ and $\Delta\gamma$ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.
Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $\phi$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $\phi$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $\phi$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.
Global hyperon polarization, $\overline{P}_\mathrm{H}$, in Au+Au collisions over a large range of collision energy, $\sqrt{s_\mathrm{NN}}$, was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naïve extrapolation of data trends suggests a large $\overline{P}_\mathrm{H}$ as the collision energy is reduced, the behavior of $\overline{P}_\mathrm{H}$ at small $\sqrt{s_\mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of $\Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $\sqrt{s_\mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91\pm0.81(\rm stat.)\pm0.15(\rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, of the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum, p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The proton and anti-proton elliptic flow for 0–80% central Au+Au collisions at √sNN= 19.6 GeV, where “(+,-) EP” refers to the event plane reconstructed using all of the charged particles and “(-) EP” refers to the event plane reconstructed using only the negatively charged particles.
We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |#Delta#eta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum,
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top left) pT = 0.4–0.6 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (top right) pT = 0.6–0.8 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom left) pT = 0.8–1.0 GeV/c in Au+Au collisions at √sNN = 200 GeV after the mixed-event background subtraction.
The Kπ pair invariant mass distribution for various pT bins (bottom right) pT = 1.0–1.2 GeV/c in Au+Au collisions at √sNN = 62.4 GeV after the mixed-event background subtraction.
The signal-to-background ratio for $K^{*0}$ measurements as a function of $p_T$ for different collision centrality bins (0-10%, 10-40%, 40-60%, 60-80%) in Au+Au collisions at 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ mass as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
$K^{*0}$ width as a function of $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Au+Au (|$\eta$| < 0.8) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
The $K^{*0}$ reconstruction efficiency multiplied by the detector acceptance as a function of $p_T$ in Cu+Cu (|$\eta$| < 1.0) collisions at 200 GeV for different collision centrality bins (0-20% ,20-40% , 40-60%)
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%, 60-80%) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Mid-rapidity $K^{*0}$ $p_T$ spectra for various collision centrality bins (0-20%, 20-40%, 40-60%) in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity yields dN/dy of $K^{*0}$ as a function of the average number of participating nucleons, $⟨N_{part}⟩$, for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $K^{*0}$ $⟨p_T⟩$ as a function $⟨N_{part}⟩$ for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
The mid-rapidity $⟨p_T⟩$ of $\pi$, K, p and $K^{*0}$ as a function of $⟨N_{part}⟩$ for Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in Au+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$.
Mid-rapidity $N(K^{*0})N(K^-)$ in Cu+Cu collisions divided by $N(K^{*0})N(K^-)$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})N(K^-)$ in d+Au collisions divided by $N(K^{*0})N(K^-)$ ratio in d+Au collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(K^{*0})/N(K^-)$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio for Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Au+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in Cu+Cu collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $[N(\phi)/N(K^{*0})]$ in d+Au collisions divided by $[N(\phi)/N(K^{*0})]$ ratio in p+p collisions at $\sqrt{s_{NN}}$=200 GeV as a function of $⟨N_{part}⟩$
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Au+Au collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias Cu+Cu collisions as a function of $\sqrt{s_{NN}}$.
Mid-rapidity $N(\phi)/N(K^{*0})$ ratio in minimum bias p+p collisions as a function of $\sqrt{s_{NN}}$.
The $K^{*0}$ $v_2$ (Run IV) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $v_2$ (Run II) as a function of $p_T$ in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ $R_{CP}$ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
The $K^{*0}$ ~$R_{CP}$~ as a function of $p_T$ in Au+Au collisions at 62.4 and 200 GeV compared to the $R_{CP}$ of $K^0_S$ and $\Lambda$ at 200 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.