Based on a data sample of 10 billion $J/\psi$ events collected with the BESIII detector, improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^+e^-$ are performed, where the $\eta$ and $\eta'$ are produced through the radiative decays $J/\psi\rightarrow\gamma \eta/\eta'$. The branching fractions of $\eta\rightarrow\gamma e^+e^-$ and $\eta'\rightarrow\gamma e^+e^-$ are measured to be $(7.07 \pm 0.05 \pm 0.23)\times10^{-3}$ and $(4.83\pm0.07\pm0.14)\times10^{-4}$, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for $\eta\rightarrow\gamma e^+e^-$ is determined to be $\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}$. Within the multi-pole model, we extract the electromagnetic transition form factors for $\eta'\rightarrow\gamma e^+e^-$ to be $\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2}$ and $\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}$. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the $\eta$ and $\eta'$ are calculated to be $(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm}$ and $(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}$, respectively. In addition, we search for the dark photon in $\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}$, and the upper limits of the branching fractions as a function of the dark photon are given at 90% confidence level.
The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.
The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta^\prime\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.
Using a sample of $(10087\pm44)\times 10^6$$J/\psi$ events, which is about 45 times larger than that was previously analyzed, a further investigation on the $J/\psi\rightarrow \gamma 3(\pi^+\pi^-)$ decay is performed. A significant distortion at 1.84 GeV/$c^2$ in the line-shape of the $3(\pi^+\pi^-)$ invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, $X(1840)$ and $X(1880)$. The new state $X(1880)$ is observed with a statistical significance larger than $10\sigma$. The mass and width of $X(1880)$ are determined to be $1882.1\pm1.7\pm0.7$ MeV/$c^2$ and $30.7\pm5.5 \pm2.4$ MeV, respectively, which indicates the existence of a $p\bar{p}$ bound state.
The binned invariant mass spectrum of 6pi. The data correspond to Figure 3 of the event sample collected by BESIII. The mass range 1.55 < M(6pi) < 2.07 GeV is subdivided into 130 equidistant M(6pi) bins with a width of 4 MeV. The binned mass spectrum has been corrected by efficiency and the background Jpsi -> pi0 3(pi+ pi-) has been removed.
A precision measurement of the matrix elements for $\eta\to\pi^+\pi^-\pi^0$ and $\eta\to\pi^0\pi^0\pi^0$ decays is performed using a sample of $(10087\pm44)\times10^6$$J/\psi$ decays collected with the BESIII detector. The decay $J/\psi \to \gamma \eta$ is used to select clean samples of 631,686 $\eta\to\pi^+\pi^-\pi^0$ decays and 272,322 $\eta\to\pi^0\pi^0\pi^0$ decays. The matrix elements for both channels are in reasonable agreement with previous measurements. The non-zero $gX^2Y$ term for the decay mode $\eta\to\pi^+\pi^-\pi^0$ is confirmed, as reported by the KLOE Collaboration, while the other higher-order terms are found to be insignificant. Dalitz plot asymmetries in the $\eta\to\pi^+\pi^-\pi^0$ decay are also explored and are found to be consistent with charge conjugation invariance. In addition, a cusp effect is investigated in the $\eta\to\pi^0\pi^0\pi^0$ decay, and no obvious structure around the $\pi^+\pi^-$ mass threshold is observed.
The acceptance corrected $\eta\to\pi^+\pi^-\pi^0$ data from 10 billion $J/\psi$ events collected at BESIII and the corresponding statistical uncertainties in the Dalitz plot variables $X$ and $Y$. The data are divided into $20\times20$ bins in $X$ and $Y$, and only the bins with non-zero event are listed in the table. The first two columns in the table are the center values of $X$ and $Y$, respectively. The last column is the acceptance corrected data and the corresponding statistical uncertainties.
The acceptance corrected $\eta\to\pi^0\pi^0\pi^0$ data from 10 billion $J/\psi$ events collected at BESIII and the corresponding statistical uncertainties in the Dalitz plot variables $X$ and $Y$. The data are divided into $20\times20$ bins in $X$ and $Y$, and only the bins with non-zero event are listed in the table. The first two columns in the table are the center values of $X$ and $Y$, respectively. The last column is the acceptance corrected data and the corresponding statistical uncertainties.
Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\rm{hT}}^{2}$ region, i.e. $P_{\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{\rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{\rm{hT}}^{2}$ to study the dependence of the average transverse momentum $\langle P_{\rm{hT}}^{2}\rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{\rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.
Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.
Multiplicities of positively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{+}}$, as follows: $M^{K^{+}}$ = $M_{raw}^{K^{+}}$ * $\frac{\eta^{K^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{+}} } {DVM^{DIS} }$.
Multiplicities of negatively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{-}}$, as follows: $M^{K^{-}}$ = $M_{raw}^{K^{-}}$ * $\frac{\eta^{K^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{-}} } {DVM^{DIS} }$.
The process $e^{+}e^{-}\to \eta^{\prime} J/\psi$ is observed for the first time with a statistical significance of $8.6\sigma$ at center-of-mass energy $\sqrt{s} = 4.226$ GeV and $7.3\sigma$ at $\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \pm 0.7 \pm 0.3)$ and $(3.9 \pm 0.8 \pm 0.3)$ pb at $\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.
Summary of the values used to calculate the Born cross section of $e^{+}e^{-}\to\eta^{\prime} J/\psi$. The upper limits are at the $90\%$ C.L.
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Multiplicities of positively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{+}}$, as follows: $M^{\pi^{+}}$ = $M_{raw}^{\pi^{+}}$ * $\frac{\eta^{\pi^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{+}} } {DVM^{DIS} }$.
Multiplicities of negatively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{-}}$, as follows: $M^{\pi^{-}}$ = $M_{raw}^{\pi^{-}}$ * $\frac{\eta^{\pi^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{-}} } {DVM^{DIS} }$.
Multiplicities of unidentified positively charged hadrons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{h^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the hadron count, $DVM^{h^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the hadron count, $\eta^{h^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{h^{+}}$, as follows: $M^{h^{+}}$ = $M_{raw}^{h^{+}}$ * $\frac{\eta^{h^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{h^{+}} } {DVM^{DIS} }$.
In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.