The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic errors are combined quadratically.
SIG in (1/SIG) is the total hadronic cross section. The erros are statistical ones. The cross sections SIG(C=A), SIG(C=B), and SIG(C=C) obtained with A) both kaons identified, B) at least one kaon identified, and C) without requiring kaon identification.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic erros are combined quadratically. For 0.05<X<0.2 the resulting cross s ection was taken by averaging the results with both identified kaons and with at least one identified kaon, for 0.2<X<1 the results obtained without particle id entification.
We have observed $23.2 \pm 6.0_{-0.9}^{+1.0}$ purely-leptonic decays of $D_s^+ -> \mu^+ \nu_\mu$ from a sample of muonic one prong decay events detected in the emulsion target of Fermilab experiment E653. Using the $D_s^+ -> \phi \mu^+ \nu_\mu$ yield measured previously in this experiment, we obtain $B(D_s^+ --> \mu^+ \nu_\mu) / B(D_s^+ --> \phi \mu^+ \nu_\mu) =0.16 \pm 0.06 \pm 0.03$. In addition, we extract the decay constant $f_{D_s}=194 \pm 35 \pm 20 \pm 14 MeV$.
No description provided.
Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.
No description provided.
No description provided.
No description provided.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
The 132 pbt - 1 of data collected by ALEPH from 1991 to 1994 have been used to analyze η and ω production in τ decays. The following branching fractions have been measured: \(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }} \right) = \left( {1.91 \pm 0.07 \pm 0.06} \right) \times {10^{ - 2}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }{\pi ^0}} \right) = \left( {4.3 \pm 0.6 \pm 0.5} \right) \times {10^{ - 3}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {K^ - }} \right) = \left( {2.9_{ - 1.2}^{ + 1.3} \pm 0.7} \right) \times {10^{ - 4}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {h^ - }{\pi ^0}} \right) = \left( {1.8 \pm 0.4 \pm 0.2} \right) \times {10^{ - 3}}\) and the 95% C.L. limit B(τ− → ντηπt -) < 6.2 × 10t - 4 has been obtained. The ωπt- and ηπt -π0 rates and dynamics are found in agreement with the predictions made from e+e∼ - annihilation data with the help of isospin invariance (CVC).
$\pi^+\pi^-\pi^0$ mass distribution (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the one-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
$\pi^+\pi^-\pi^0$ mass distributions (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the two-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
Background-subtracted $\omega\pi$ mass spectrum for the data presented here, plotted as black dots. The error has been set to zero if it is smaller than the point size.
The decay Λb0→J/ψ Λ is observed in 110 pb−1 of pp¯ collisions taken at s=1.8 TeV. These data are used to measure a Λb0 mass of 5621±4(stat)±3(syst) MeV/c2, and a mass difference between the Λb0 and the B0 of 340±5(stat)±1(syst) MeV/c2. The production cross-section times branching fraction for the decay Λb0→J/ψ Λ relative to that for the decay B0→J/ψ KS0 has been measured to be 0.27±0.12(stat)±0.05(syst).
No description provided.
We present measurements of correlated bb¯ cross sections, μ−μ correlations, the average B0B¯0 mixing parameter χ¯, and a limit on the CP-violating parameter εB. For these measurements, we use muon pairs from bb¯ double semileptonic decays. The data used in this analysis were taken with the Collider Detector at Fermilab and represent an integrated luminosity of 17.4±0.6 pb−1. The results concerning bb¯ production correlations are compared to predictions of next-to-leading order QCD computations.
No description provided.
Muons are from BOTTOM BOTTOMBAR decays. The common systematic uncertainties (+9.9,-7.0 PCT) of the fit and of the luminosity (+-3.6 PCT) are included in adtion to the statistical error.
Muons are from BOTTOM BOTTOMBAR decays. The common systematic uncertainties (+9.9,-7.0 PCT) of the fit and of the luminosity (+-3.6 PCT) are included in adtion to the statistical error.
The differential cross section $d\sigma/dt$ for elastic $\rho~0$ photoproduction, $\gamma p \rightarrow \rho~0 p (\rho~0 \rightarrow \pi~+ \pi~-)$, has been measured in $ep$ interactions at HERA. The squared four-momentum exchanged at the proton vertex, $t$, has been determined directly by measuring the momentum of the scattered proton using the ZEUS Leading Proton Spectrometer (LPS), a large scale system of silicon micro-strip detectors operating close to the HERA proton beam. The LPS allows the measurement of the momentum of high energy protons scattered at small angles with accuracies of 0.4% for the longitudinal momentum and 5 MeV for the transverse momentum. Photoproduction of $\rho~0$ mesons has been investigated in the interval $0.073< |t| <0.40 GeV~2$, for photon virtualities $Q~2<1 GeV~2$ and photon-proton centre-of-mass energies $W$ between 50 and 100 GeV. In the measured range, the $t$ distribution exhibits an exponential shape with a slope parameter $b = 9.8 \pm 0.8 (stat.) \pm 1.1 (syst.) GeV~{-2}$. The use of the LPS eliminates the contamination from events with diffractive dissociation of the proton into low mass states.
SLOPE OF THE DSIG/DT distribution.
Total cross section integrated over t region.
Additional cross section, SIG, not given in the paper.
The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.
Total Elastic Cross Section.
No description provided.
SLOPE OF DSIG/DT distribution.
We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.