The polarization parameter in pp elastic scattering was measured at 6 GeV/ c with fine t resolution for 0.02 < − t < 0.5 GeV 2 using a polarized proton beam with Effective Mass Spectrometer at the Zero Gradient Synchrotron. The polarization rises like √− t in the interval 0.02 < − t < 0.1 GeV 2 , No statistical significant structure was found in this region of momentum transfer.
No description provided.
Results are presented from an experiment designed to make the first systematic study of the depolarization parameter in elastic proton-proton scattering at high energies. Measurements were made at 3.0 and 6.0 GeV/c at |t| values extending to 1.7 (GeV/c)2 at the higher momentum. A high-intensity unpolarized proton beam was incident on a polarized proton target and the polarization of the elastically scattered recoil protons was determined with a carbon analyzer. The results are discussed in the framework of optical and exchange models.
No description provided.
No description provided.
The χ 1 ++ (3507) and the χ 2 ++ (3553) states have been observed in the Goliath spectrometer at the CERN SPS in 185 GeV/ c π − -Be collisions. Their radiative decays contribute 27.7% (for the χ 1 ++ ) and 12.8% (for the χ 2 ++ ) to J ϕ production. At this energy, their cross sections are 65±19 nb and 96±29 nb, respectively
No description provided.
New results are presented from the continuation of an experiment designed to study the polarization in elastic p−p scattering at large four-momentum transfers. A high-intensity unpolarized proton beam of momentum 12.3 GeV/c was incident on a propanediol polarized proton target and both final-state protons were detected and momentum-analyzed in multiwire proportional chamber spectrometers. The measurements spanned the t range 1.5<|t|<6.2 (GeV/c)2. The results are discussed in the framework of optical, exchange, and parton models.
INCLUDING DATA FROM AN EARLIER RUN (ABSHIRE PRL 32, 1261 (1974)) FOUND TO BE IN STATISTICAL AGREEMENT.
We present here the results of an experiment to study the polarization in p−p elastic scattering at the incident momenta 5.15, 7.00, and 12.33 Ge V/c, at t values ranging between - 0.5 and - 6.5 (GeV/c)2. At each momentum we observe a relative maximum in the polarization around t=−1.8 (GeV/c)2. At 12.33 GeV/c the data exhibit a double zero near t=−2.4 (GeV/c)2 and another relative maximum near t=−2.9 (GeV/c)2. The results are discussed in terms of the Chu-Hendry optical model.
No description provided.
No description provided.
No description provided.
Differential cross sections are presented for pion-proton elastic scattering in the angular range −0.6≳cosθc.m.≳−0.98 at 15 incident π+ momenta from 2.18−5.25 GeVc. The angular distributions rise steeply near 180° at all momenta. For laboratory momenta ≳2.75 GeVc they show a minimum at u≈−0.17 (GeVc)2 and a broad maximum near u≈−0.6 (GeVc)2. When the data are plotted versus s, for fixed u, a strong signal from the Δ(2420) resonance is observed. The data are compared with a direct-channel resonance model and with a Regge model which considers the exchange of the Nα, Nγ, and Δδ Regge trajectories. The qualitative success of both the direct-channel resonance model and the Regge model lends support to the concept of duality.
No description provided.
No description provided.
No description provided.
The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.
No description provided.
RAW CROSS SECTION WITHIN MASS CUTS.
No description provided.
We present herein the initial results of a large-angle elastic p−p polarization experiment which is now in progress at the Argonne ZGS (Zero-Gradient Synchrotron) accelerator. Data for the incident proton momentum of 5.15 GeVc are presented for 30∘≲θc.m.≲90∘. These results, which extend to t≈−4.0(GeVc)2, represent the first high-statistics p−p polarization measurements for |t| values greater than ∼2.5 (GeVc)2. We observe a minimum in the polarization near t=−0.8(GeVc)2, a smooth increase in the polarization until a maximum is attained near t=−1.8(GeVc)2, and then a monotonic decline in the polarization until the value of zero is reached at θc.m.=90∘. The data are analyzed in terms of an optical model.
No description provided.
None
'1'.
'1'.
'1'.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4