We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
No description provided.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.
Coherent 3 π production on nine different nuclear targets has been studied using a 40 GeV/ c π − beam at the Serpukhov accelerator (CERN-Serpukhov experiment no. 5). The absorption in nuclear matter of the produced system has been measured, analysing the data on the different nuclear targets. Identica results are obtained from the differential cross sections and from the coherent nuclear cross sections. The 1 + waves show a very weak absorption, definitely smaller than 0 − and 2 − waves. No influence on the absorption comes from the spin-flip amplitudes, which have been found to be negligible in the coherent region.
Data are extracted from graph by JINR data group.
Data are extracted from graph by JINR data group.
Data are extracted from graph by JINR data group.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.
None
No description provided.
None
No description provided.
Cross-sections for diffractive particle production and pseudorapidity distributions of the decay products of diffractive states are presented. The data were obtained with the UA 5 streamer chamber detector at the CERNpp Collider operated in a new pulsed mode yieldingpp interactions at c.m. energies of 900 and 200 GeV. Data recorded with a special trigger designed to select a sample of events enriched in single-diffractive interactions clearly favour apt-limited fragmentation of diffractive states. The cross-section for single-diffractive particle production ϊ was found to be 7.8±0.5±1.1 mb at 900 GeV and 4.8±0.5±0.8 mb at 200 GeV (first error statistical, second systematic). From the pseudorapidity distribution of diffractive states we deduce the average number of charged particles to be 6.5±1.0 at 900 GeV and 4.1±1.1 at 200 GeV. Furthermore we report on our estimates for the cross-section of double-diffractive particle production at both Collider energies.
Single diffractive cross sections.
A study is presented of the process gamma p -->XY, where there is a large rapidity gap between the systems X and Y. Measurements are made of the differential cross section as a function of the invariant mass mx of the system produced at the photon vertex. Results are presented at centre of mass energies of W_gp = 187 GeV and W_gp = 231 GeV, both where the proton dominantly remains intact and, for the first time, where it dissociates. Both the centre of mass energy and the mx~2 dependence of HERA data and those from a fixed target experiment may simultaneously be described in a triple-Regge model. The low mass photon dissociation process is found to be dominated by diffraction, though a sizable subleading contribution is present at larger masses. The pomeron intercept is extracted and found to be alpha_pom(0) = 1.068 \pm 0.016 (stat.) \pm 0.022 (syst.) \pm 0.041 (model), in good agreement with values obtained from total and elastic hadronic and photoproduction cross sections. The diffractive contribution to the process gamma p --> Xp with mx~2 / W_gp~2 < 0.05 is measured to be 22.2 \pm 0.6 (stat.) \pm 2.6 (syst.) \pm 1.7 (model) % of the total gamma p cross section at W_gp = 187 GeV.
Data for proton remaining intact.
Data for proton dissociating.