The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.
No description provided.
No description provided.
No description provided.
The cross section for the elastic photoproduction of \r0\ mesons ($\gamma p \rightarrow \rho~0 p$) has been measured with the H1 detector at HERA for two average photon-proton centre-of-mass energies of 55 and 187GeV. TheFcenterline lower energy point was measured by observing directly the $\rho~{0}$ decay giving a cross section of $9.1\pm 0.9\,(\stat)\pm 2.5\,(\syst)\;\mu$b. The logarithmic slope parameter of the differential cross section, ${\rm d}\sigma/{\rm d}t$, is found to be $10.9 \pm 2.4\,(\stat) \pm 1.1\,(\syst)\;$GeV$~{-2}$. The \r0\ decay polar angular distribution is found to be consistent with s-channel helicity conservation. The higher energy cross section was determined from analysis of the lower part of the hadronic invariant mass spectrum of diffractive photoproduction and found to be $13.6\pm 0.8\,(\stat)\pm 2.4\,(\syst)\;\mu$b.
PI+ PI- cross section.
RHO0 cross section by selecting Mpipi to lie between 2Mpi and Mrho + 5width0.
No description provided.
The Λ b polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λ b candidates are selected using ( Λπ + )-lepton correlations. From this event sample, the Λ b polarization is measured to be P Λ b = −0.23 −0.20 +0.24 (stat.) −0.07 +0.08 (syst.).
No description provided.
Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.
A sample of Z0→τ+τ− events observed in the DELPHI detector at LEP in 1991 and 1992 is analysed to measure the τ polarisation in the exclusive decay channels\(ev\bar v\),\(\mu v\bar v\), πν, ρν and a1ν. The τ polarisation is also measured with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision than the use of the exclusive decay modes. The results have been combined with those published on the 1990 data. A measurement of the τ polarisation as a function of production angle yields the values for the mean τ polarisation 〈P〉τ=−0.148±0.022 and for the Z0 polarisationPZ=−0.136±0.027. These results are used to determine the ratio of vector to axial-vector effective couplings for taus\(\bar v_\tau/\bar a_\tau= 0.074 \pm 0.011\), and for electrons\(\bar v_e /\bar a_e= 0.068 \pm 0.014\), compatible with e-τ universality. With the assumption of lepton universality, the ratio of vector to axial-vector effective couplings for leptons\(\bar v_l /\bar a_l= 0.072 \pm 0.008\) is obtained, implying a value of the effective weak mixing angle sin2θefflept=0.2320±0.0021.
Results are for both TAU+ and TAU- decay.
The systematic error contains a systematic error of 0.003 common to all channels.
Errors are statistical only.
The vector analyzing power iT11 and the composite observable τ22=T22+T20/ √6 were measured at 10 incident pion energies between 100 and 294 MeV, in an angular range between 50° and 120°. Two different techniques were applied, the detection of the pion with a magnet spectrometer, and the πd coincidence method with scintillation counters. In the case of the first technique also two different target materials were used. Consistency among all data was obtained. The experimental data are compared to Faddeev calculations from one of us (H.G.). The discrepancies between theory and experiment are discussed, and an outlook for further research is given.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}
Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.
A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.
No description provided.
The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.
The spin-rotation parameters A and R and the related spin-rotation angle β have been measured for π+p and π−p elastic scattering using protons polarized in the scattering plane. The pion-beam momenta are 427, 471, 547, 625, and 657 MeV/c and the angular range is −0.9≤cosΘc.m.≤0.3. The scattered pion and recoil proton were detected in coincidence, using a scintillator hodoscope for the pions, and the Large Acceptance Spectrometer combined with the JANUS polarimeter for the recoil protons. The results are compared with the four recent πN partial wave analyses (PWA's). Our data show that the major features of these PWA's are correct. The A and R measurements complete our program of pion-nucleon experiments, providing full data sets at three of the above beam momenta. Such sets can be used to test the constraints in the PWA's or to obtain a model-independent set of πN scattering amplitudes.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
BETA is the spin-rotation angle.
Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.
No description provided.
No description provided.
No description provided.