We present results on an amplitude analysis of the K + K − system produced in the reaction π − p→K + K − n from threshold up to 2.2 GeV. The branching ratios of f 0 and f' to K K have been determined. In the low mass region of the K K system the observation of an S-wave enhancement at 1.3 GeV and the interference of the f 0 -A 2 -f' mesons are studied. We observe a 3 − structure in the mass region of 1.7 GeV which is consistent with g 0 production. With this interpretation the branching ratio g→ K K has been determined. Evidence for a new structure in the J p = 2 + wave around 1.8 GeV with a width of ∼200 MeV is presented.
HELICITY ZERO D-WAVE AMPLITUDE FITTED BY SUM OF BREIT-WIGNER RESONANCES. F 14 GIVES T-DEPENDENCE. ALSO EVIDENCE FOR 1.8 GEV STATE WITH 0.60 +- 0.13 MUB PRODUCTION CROSS SECTION.
FROM HELICITY ZERO F-WAVE AMPLITUDE ASSUMING PREDOMINANTLY G(1680)0 PRODUCTION. F 16 GIVES T-DEPENDENCE.
In a high statistics (90 events/μb) bubble chamber experiment, the reactions π − p→K s 0 K ± π ∓ n have been studied at 3.95 GeV/ c . A significant enhancement is observed in the ( K K π) system which we attribute to the production of the E(1420) meson. For its mass, M , and width, Λ, we find M =1426±6 MeV and Γ =40±15 MeV. The E(1420) quantum numbers are determined to be I G J P =0 + 1 + with a branching ratio E → K ∗ K + c.c E →[δπ+( K ∗ K + c.c. )]=0.86±0.12 , where δ→ K K . The cross section for the reaction π − p→En, with E→K 0 K ± π ± , is 8.2±1.0 μ b. Forward and backward productions are observed in the approximate ratio 2:1. The SU(3) assignment of the E(1420) meson is discussed.
BACKGROUND SUBTRACTED.
No description provided.
No description provided.
An analysis is presented of the reaction K − p → K 0 π − p at 4.2 GeV /c incident momentum, using analytical techniques in fully dimensional phase space. This methods allows to isolate the contributions of the 0 + , 1 − and 2 + (K π ) partial waves in various helecity Separating well-understood contributions from the rest, the method is particularly useful for the detection of small effects (≈1% of the total final-state cross section) not visible in the mass distributions: (i) small cross-section contributions of 3 − (K π partial waves, K ∗ (1780), are unambiguously isolated; (ii) 3.5σ evidence is given for Σ(1480) in the (p K 0 ) system; (iii) effects due to a second K π P-wave or the possible presence of a doubly peripheral mechanism are discussed. The method furthermore allows simultaneous treatment of the (K π ) partial waves, p π ) partial waves and their interferences and of a Σ(1765) signal (with spin 5 2 ). While interferences within the (K π ) and within the (p π ) systems are strongly determining the corresponding distributions, no interference between these systems is needed.
CHANNELS CONTRIBUTING TO K- P --> AK0 PI- P. M/ETA IS ABSOLUTE VALUE OF Z-COMPONENT OF SPIN/EXCHANGE NATURALITY.
The properties of the effect observed in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (τ ≅ 80 MeV /c 2 ) are studied. The ω 0 ϱ 0 , A 2 0 π + π − and π + π − π + π − π 0 (non-resonant) channels are found to be coupled with this object. The assignment I G = 1 − is established and an analysis of the √ s behaviour of the density matrix elements for the final state ω 0 ϱ 0 clearly favour J P = 2 + , 4 + … Comparisons are made with present theoretical schemes describing this mass region.
MAJOR CONTRIBUTION TO STRUCTURE OBSERVED AT 1949 +- 10 MEV WITH WIDTH 80 +- 20 MEV.
K ∗0 (890) production in the hyperchange exchange reaction π − p → K ∗0 (890) Λ 0 Σ 0 at 10 GeV/ c (28 448 events) is discussed. An amplitude analysis in the t ′ range up to 1 GeV 2 shows that the production mechanism is dominated by natural parity exchange (∼84%). Comparisons are made with predictions from a Regge model and a quark model.
DENSITY MATRIX ELEMENTS IN THE GOTTFRIED-JACKSON SYSTEM ALLOWING FOR COHERENT S-WAVE BACKGROUND TO P-WAVE BREIT-WIGNER K*(892)0 RESONANCE.
No description provided.
The reaction p n → p p π − at 2.98 GeV/ c is studied with high statistics. The dominant Δ −− production is found in the framework of the additive quark model to proceed mainly through unnatural parity exchange in the t -channel. A detailed comparison with the reaction K − p → K ∗0 n confirms, for the dominant part of the cross section, the predictions of the quark model.
No description provided.
MIN(-T) IS 0.015 +- 0.006 GEV**2.
To complete data on resonance electroproduction we constructed an electron spectrometer with large angular and momentum acceptance. As a first result inclusive cross sections for an invariant hadronic mass 1.2
No description provided.
No description provided.
No description provided.
Data from the MARK-J detector on the reactions e+e−→μ+μ−, τ+τ− in the center-of-mass energy range from 12 to 36.7 GeV are presented. The μ, τ radii are shown to be <10−16 cm. A search has been made for the production of a new heavy lepton and for the production of spin-0 supersymmetric partners of the muon. 95%-confidence-level lower limits of 16 GeV for the mass of a new charged heavy lepton and 15 GeV for the mass of the scalar partners of the muon are obtained.
No description provided.
This Letter compares neutral-current and charged-current scaling-variable distributions in neutrino-nucleon interactions induced by a narrow-band beam at Brookhaven National Laboratory; the x distribution of neutral-current events has been reported previously. The first measurement of flux-normalized neutrino cross sections from a narrow-band beam in the energy range Eν=3−9 GeV is also presented.
Measured charged current total cross section.
Results are presented from a study of inclusive neutral strange particle production by a 147 GeV/ c tagged π + /K + /p beam in the Fermilab 30-inch hydrogen bubble chamber. The experiment made use of the proportional hybrid spectrometer system. Results are based on 995 K S 0 , 485 Λ, and 83 Λ found in a sample of 132 000 pictures. Cross sections are given for inclusive production of these particles by each of the three beam particles, and comparisons are made with measurements at other energies. Topological cross sections are also calculated, and KNO multiplicity scaling is investigated. Distributions are presented of invariant cross sections as functions of the Feynman scaling variable x and c.m. rapidity y . The transverse momentum-squared distributions with their fitted slopes are also given. Comparisons are made of the production characteristics for the three beam types.
No description provided.
No description provided.
No description provided.