None
No description provided.
No description provided.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
Full angular distributions of the differential cross-section dσ/dμ and of the analysing power A y in p p elastic scattering have been measured at 697 MeV/ c . The results of A y are compared with the predictions of various theoretical models.
No description provided.
No description provided.
Legendre Polynomials from fit to angular distribution (LEG(L=0)=3.59 +- 0.02).
Differential cross sections of proton Compton scattering have been measured in the energy range between 400 MeV and 1050 MeV at C.M.S. angles of 150° and 160°.
No description provided.
No description provided.
No description provided.
Differential cross sections of proton Compton scattering have been measured in the angular range between 50° and 130° at incident photon energies from 900 MeV to 1150 MeV. A sharp dip in the angular distribution found by a Bonn group at 110° in the photon energy region around 900 MeV is not observed in the present measurement. A new dip-bump structure is found at photon energies above 1050 MeV, which is similar to that for pion-nucleon scattering.
No description provided.
No description provided.
No description provided.
A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.
Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.
The angular distributions of the analyzing power A y and of the differential cross section d σ/ d Ω in p p elastic scattering have been measured at 439 and 544 MeV/c. The results of A y are compared with various theoretical models.
Data requested from authors.
Legendre fit polynomials.
Normalized Legendre fit polynomials.
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.
Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.