We have measured deep inelastic muon-deuteron scattering in the range 0.4<Q2<3.4 and 1.6<ν<5.6 GeV. We have extracted the neutron structure function and find that νW2n differs significantly from νW2p, as also found in e−d scattering. To compare μ−d and e−d scattering we form the ratio r(Q2)=(νW2)μd(νW2)ed=N(1+Q2Λ2)−2 and find N=0.925±0.038 and 1Λ2=−0.019±0.016.
No description provided.
We report measurements of the ratio of the deep-inelastic electron-neutron to electron-proton differential cross sections in the threshold ( ω <3) region. The ratio was found to scale and to decrease monotically with decreasing ω . No violation of the quark model lower bound of 0.25 was observed in the ratio.
DATA ARE AVERAGED THROUG AVAILABLE KINEMATIC REGION.
Differential cross sections for electron scattering from hydrogen and deuterium in the deep-inelastic region show that the neutron cross section is significantly smaller than the proton cross section over a large part of the kinematic region studied. Although νW2d differs in magnitude from νW2p, it exhibits a similar scaling behavior.
No description provided.
No description provided.
No description provided.
We have measured muon-proton deep inelastic scattering in the range 0.4<q2<3.6 (GeV/c)2. The data are consistent with muon-electron universality, and if the ratio ρ=νW2(μ−p)νW2(e−p) is fitted with the form ρ=N(1+q2Λ2)−2, we obtain N=0.997±0.043 and Λ−2=+0.006±0.016 (GeV/c)2. This result establishes that |Λ|>~5.1 GeV/c with 95% confidence.
No description provided.
No description provided.
No description provided.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.
Cross sections for inelastic scattering of electrons from hydrogen and deuterium were measured for incident energies from 4.5 to 18 GeV, at scattering angles of 18°, 26°, and 34°, and covering a range of squared four-momentum transfers up to 20 (GeVc)2. Neutron cross sections were extracted from the deuterium data using an impulse approximation. Comparisons with the proton measurements show significant differences between the neutron and proton cross sections.
Axis error includes +- 1/1 contribution (DUE TO ERRORS IN ABOVE CORRECTIONSFOR DEAD-TIME LOSSES, INEFFICIENCIES IN E- IDENTIFICATION).
Differential cross sections for electrons scattered inelastically from hydrogen have been measured at 18°, 26°, and 34°. The range of incident energy was 4.5 to 18 GeV, and the range of four-momentum transfer squared was 1.5 to 21 (GeVc)2. With the use of these data in conjunction with previously measured data at 6° and 10°, the contributions from the longitudinal and transverse components of the exchanged photon have been separately determined. The values of the ratio of the photoabsorption cross sections σSσT are found to lie in the range 0 to 0.5. The question of scaling of 2MpW1 and νW2 as a function of ω is discussed, and scaling is verified for a large kinematic range. Also, a new scaling variable which reduces to ω in the Bjorken limit is introduced which extends the scaling region. The behavior of σT and σS is also discussed as a function of ν and q2. Various weighted sum rules of νW2 are evaluated.
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
None
No description provided.
No description provided.
No description provided.
Cross sections for inelastic scattering of electrons from hydrogen were measured for incident energies from 7 to 17 GeV at scattering angles of 6° to 10° covering a range of squared four-momentum transfers up to 7.4 (GeV/c)2. For low center-of-mass energies of the final hadronic system the cross section shows prominent resonances at low momentum transfer and diminishes markedly at higher momentum transfer. For high excitations the cross section shows only a weak momentum-transfer dependence.
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).
Axis error includes +- 0.0/0.0 contribution (?////FROM UNCERTAINTY IN ELECTRON-DETECTION EFFICIENCY).