The differential cross section of the reaction ( γ p → p φ ) has been measured in the t range 0 ⩽ t ⩽ 0.4 GeV 2 and for photon energies from 3.0 to 6.7 GeV. In particular for the small t region the measurement accuracy was better than 10%. We obtained for the slope parameter B in an exponential parametrization of the differential cross section d σ /d t = A e − Bt values of B ⋍ 6 ± 0.5 GeV −2 which are significantly larger than the slopes obtained by most other experiments at higher t values. This indicates a t dependence of B particularly in the small t region.
No description provided.
No description provided.
No description provided.
Measurements are presented of the inclusive π 0 production cross section, in the transverse momentum range 2.3 ⪅ p T ⪅4.5 GeV/c, for dd and dp interactions at total c.m. energies of √ s = 52.7 GeV and √ s = 63.2 GeV and for pp interactions at √ s = 52.7 GeV. The produced π 0 's are detected by identifying both protons from the decay π 0 → γγ . As in pp interactions, the data can be adequately described by a p T −n ƒ(x T ) dependence with n ≌ 8 . The data are approximately consistent with the expectations of free nucleon scattering. No significant differenceare observed in either the charged or the neutral particle distributions associated with π 0 , for dd, dp and pp interactions.
GLOBAL NORMALIZATION UNCERTAINTY = 12 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 5 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 10 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 6 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 15 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 7 PCT.
A ( K π π ) + mass enhancement is observed in the reactions K − p → Ξ −K o + π + π o − when events with a small (K − → Ξ − ) four momentum transfer squared are selected. The signal is also visible in the reaction K − p → Ξ − π + + neutrals. The enhancement, centered at 1.28 GeV, is seen to decay preferentially into Kϱ with spin-parity J P = 1 + . The cross section for K − p→ Ξ − C + (1.28) with C + → K ϱ at 4.15 GeV/c incident K − momentum is (6.2 ± 0.6) μ b.
ASSUMING ISOSPIN HALF FOR C(1280)+ AND C(1400)+. FOR C(1280)+, D(SIG)/DU HAS SLOPE OF 1.60 +- 0.30 GEV**-2. THESE AXIAL VECTOR RESONANCES ARE HERE ENCODED AS QLOW(1240)+ AND QHIGH(1340)+.
We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .
ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.
THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
No description provided.
No description provided.
We present experimental data on the K L 0 p → K S 0 p reaction between 4 and 14 GeV/ c in the range 0.1 ≲ | t | ≲ 2 GeV 2 . This experiment has been performed at the CERN PS, using spark chambers and a large aperture magnet. The results show a break of slope at t = −0.3 GeV 2 . The ω trajectory deduced from the data has an intercept α (0) = 0.5 and a slope α ′ = 0.88. A comparison with various models shows that the non-flip amplitude is dominant.
No description provided.
A mass-dependent asymmetry was observed in the decay angular distribution of a photoproduced K + K − system near the K + K − threshold. The corresponding moments 〈 Y 1 0 〉 have been evaluated. Interpreting the asymmetry as an S-P wave interface due to the states S 993 ∗ (0 + ) and ø 1019 (1 − ) one can compute the moments 〈 Y 1 0 〉 through an amplitude analysis. The theoretical calculation reproduces the experimental results well, if one assumes a real S-wave amplitude for the S 993 ∗ . The data cannot be explained by a non-resonant real S-wave. Other possibilities have been discussed. An estimate of the photoproduction cross section of the S ∗ → K + K − can be given on the basis of the above hypothesis.
No description provided.
Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.
No description provided.
No description provided.
FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.
Inclusive cross sections for the production of π ± and K ± mesons in proton-proton collisions have been measured at a c.m. energy √ s = 45 GeV, in the range 0.41 < x < 0.95 and 0.35 < p T < 1.45 GeV, where x = 2 p L/√ s and p L , p T are the longitudinal and transverse components of the momentum of the meson. Within the measured range the p T dependence of the invariant cross section is essentially independent of x and weakly dependent on the type of particle. For all particles the invariant cross sections at fixed p T fall by three orders of magnitude between x = 0.4 and 0.95. Except at the highest values of x and p T , the statistical accuracy is better than 10%. The data are compared with a triple-Regge model and with a simple quark-parton model.
No description provided.
No description provided.
No description provided.
An analysis of the K 0 K 0 system at threshold produced in the final states p p → K S 0 K S 0 ( n π) at 700–760 MeV/ c , is presented. A simultaneous fit to the ππ phase shifts and inelasticities and to the K S 0 K S 0 effective-mass distributions using parametrizations which take into account the analytical and unitarity properties of the I = 0 S-wave amplitudes is performed. The behaviour of the eigenphases and the unphysical Riemann sheet structure for different solutions is studied.
No description provided.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI+ PI-> FINAL STATE.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI0> FINAL STATE.