The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Data read off a graph.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
We have measured the processe+e−→e+e−+hadrons, where one of the scattered electrons was detected at large angles, withQ2 ranging from 7 to 70 (VeV/c)2. The photon structure functionF2γ(x, Q2) was determined at an averageQ2 of 23 (GeV/c)2. The measurements were compared to theoretical predictions of the Quark Parton Model and Quantum Chromodynamics. In both models a hadronic part was added. Within the errors the data are in agreement with the QPM using quark masses of 300 MeV/c2 for the light quarks. The data also agree with a QCD calculation including higher order corrections. A fit yielded a\(\Lambda _{\overline {MS} } \) value of 140−65+190 MeV, where the errors include statistical and systematic uncertainties.
No description provided.
Vector meson production is studied in the reaction γγ→K+K−π+π−. A clear Φ(1020) signal is seen in theK+K− mass distribution and aK*0 (890) signal is visible in theK±π∓ one. Both do not seem to be strongly correlated with quasi two body final states. Cross sections for the processes γγ→K+K−π+π−, γγ→Φπ+π−, γγ→K+0K±π∓ and upper limits for the production of Φp, ΦΦ andK*0\(\overline {K^{ * 0} } \) are given as function of the invariant γγ mass.
No description provided.
First data point is sum of (K* K PI) and (K* AK*).
Non resonant phase space.
In a beam-dump experiment at Fermilab the cross section for charm-particle production has been deduced from a measurement of the prompt neutrino flux. The reaction cross section, if we assume only DD¯ and the dependence on atomic weight A0.75, is 57.2 ± 2.9 ± 8.5 μb/nucleon and the dependence on Feynman x and transverse momentum is EDd3σdpD3∝(1−x)3.2e−1.5p⊥ (p⊥ in GeV/c). The data are consistent with as much as 40% diffractive production of ΛcD¯.
Assuming only (D AD) production and branching ratio BR(D--> NU) = 0.101.
Assuming both (D AD) and (LAMBDA/C AD) production.
The inclusive jet cross section has been measured in the UA1 experiment at the CERN p p Collider at centre-of-mass energies √ s = 546 GeV and √ s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √ s is accounted for in terms of x T scaling.
No description provided.
The multiplicities per event of π ± and K ± are measured separately for e + e - annihilation into c c , b b , and light quark pairs at E cm=29 GeV. The K ± multiplicity is higher for heavy quark events than for light quark events. The π ± multiplicity and the π ± scaled differential cross section at low x = E beam/ E beam are found to be higher for b b events than for other events.
Numerical values requested from authors. Data given separately for (b bbar), (c cbar) and light quark jets.
Measured multiplicities for (b bbar) jets.
Measured multiplicities for (c cbar) jets.
We report on the first search with virtual photon-photon collisions for narrow, neutral resonances with even C parity in the mass range 4.5<W<19 GeV. The data were obtained via the process e+e−→e+e−γ*γ*→e e−+R with both the scattered e+ and e− detected. We find upper limits (95% confidence level) for the partial decay width of a resonance into two photons, ranging from 50 keV at W=4.5 GeV to 10 MeV at W=19 GeV. These limits constrain theoretical models involving neutral composite bosons.
No description provided.
This paper presents a study of events produced in 29-GeV electron-positron annihilation in which there are just two noncollinear charged particles, no detected photons, and two or more undetected particles. These events can be explained by attributing them primarily to the reactions e+e−→e+e−e+e− and e+e−→e+e−μ+μ− where just two particles appear in the Mark II detector. There is no evidence for unconventional sources for such events.
No description provided.
No description provided.
No description provided.
The properties of a sample of 172 charged intermediate vector bosons decaying in the (eνe) channel and 16 neutral intermediate vector bosons decaying in the (e+e-) channel are described. Masses, decay widths, decay angular distributions, and production cross-sections are given; they are shown to be in excellent agreement with the expectations of the SU2 ⊗ U1 standard model. A limit is put on the number of light-neutrino types Nν ≤ 10 at 90% c.l.
W CROSS SECTIONS ARE GIVEN IN ARNISON ET AL., NC 44A, 1.
No description provided.