The Missing Mass Squared Dependence of the Average Charged Particle Multiplicity in the Reaction K+ p --> K0 X++ from 5-GeV/c-16-GeV/c

Chliapnikov, P.V. ; Gerdyukov, L.N. ; Minaev, N.G. ; et al.
Phys.Lett.B 52 (1974) 375-380, 1974.
Inspire Record 90218 DOI 10.17182/hepdata.50028

The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.

1 data table

Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.


Study of the reaction k+ p ---> k*0(890) delta++ from 4.6-16.0 gev/c

Ciapetti, G. ; Eisner, R.L. ; Irving, A.C. ; et al.
Nucl.Phys.B 64 (1973) 58-108, 1973.
Inspire Record 94946 DOI 10.17182/hepdata.6741

A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.

20 data tables

No description provided.

No description provided.

No description provided.

More…

The reaction k+ d ---> k0 p p at 4.6 gev/c

Dehm, G. ; Geist, Walter M. ; Goebel, G. ; et al.
Nucl.Phys.B 60 (1973) 493-504, 1973.
Inspire Record 83917 DOI 10.17182/hepdata.32493

In an experiment with the CERN 2m deuterium bubble chamber the reaction K + d→K o pp (1) and the related reaction K + n→K o p (2) are studied at an incident momentum of 4.6 GeV/ c . The cross section for the latter reaction is found to be slightly larger than the cross section for the reaction K − p → K o n at the same energy. The corresponding differential cross sections agree within the rather large uncertainties. The forward amplitude for reaction (2) is predominantly real. Moreover, the total and forward differential charge exchange cross section values are compatible with those predicted on the basis of an SU (3) sum rule. A comparison of the K ± -charge exchange differential cross sections with the predictions of a Regge pole model is also presented.

2 data tables

No description provided.

SMALL -T DEUTERIUM CORRECTION APPLIED USING MC GEE WAVE FUNCTION (PAPER ALSO GIVES UNCORRECTED AND HULTHEN CORRECTED DATA).


Decay distributions in the reaction k+ p ---> k*0(1420) delta++ at 5 gev/c and quark model predictions

Eskreys, A. ; Malecki, P. ; Zalewski, K. ; et al.
Nucl.Phys.B 29 (1971) 587-600, 1971.
Inspire Record 68631 DOI 10.17182/hepdata.33559

Joint decay distributions have been studied in the reaction K + p → K ∗o (1420)Δ ++ at 5.0 GeV/ c in the transversity spin reference frame. Two alternative spin-parity assignments 2 + and 3 − for the K ∗ resonance have been considered and a comparison with the quark-model predictions has been made. The predictions of the quark model are equally well satisfied by the experimental results for both the 2 + and 3 − spin-parity assignments.

1 data table

No description provided.


Study of k*0(892) delta++(1236) production from k+ p interactions at 3 gev/c

Buchner, K. ; Dehm, G. ; Goebel, G. ; et al.
Nucl.Phys.B 29 (1971) 381-397, 1971.
Inspire Record 68636 DOI 10.17182/hepdata.33527

The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.

19 data tables

No description provided.

No description provided.

No description provided.

More…

K+ P ELASTIC SCATTERING AT 3.5-GeV/c AND 5.0-GeV/c

De Baere, W. ; Debaisieux, J. ; Dufour, J.P. ; et al.
Nuovo Cim.A 45 (1966) 885, 1966.
Inspire Record 50048 DOI 10.17182/hepdata.37572

The elastic scattering of K+ mesons on protons is studied at 3.5 and 5 GeV/c. The total elastic cross-sections are found to be (4.36±0.36) mb and (3.82±0.41) mb respectively. The differential elastic cross-sections, which exhibit characteristic diffraction peaks, are fitted by dσ/dt=(dσ/dt)0eαt, giving α=(3.85±0.12) and (4.70±0.21) (GeV/c)−2 for the two momenta respectively, with |t|⪝0.65 (GeV/c)2. The results are compared to those at neighbouring energies, giving some support to the presence of a real part of the forward scattering amplitude. The diffraction peak shows definite shrinking with increasing momenta. The data are examined in the light of models for high-energy scattering.

1 data table

No description provided.