Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

10 data tables match query

Data simulation comparison (with arbitrary normalization). Di-jet invariant mass.

Data simulation comparison (with arbitrary normalization). Difference between jet pseudorapidities.

Data simulation comparison (with arbitrary normalization). Difference between jet azimuthal angles.

More…

System size and energy dependence of near-side di-hadron correlations

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014903, 2012.
Inspire Record 943192 DOI 10.17182/hepdata.77720

Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.

40 data tables match query

Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.

The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.

Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.

More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables match query

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Beam-Energy Dependence of Directed Flow of Protons, Antiprotons and Pions in Au+Au Collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 162301, 2014.
Inspire Record 1277069 DOI 10.17182/hepdata.105867

Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). At intermediate impact parameters, the proton and net-proton slope parameter $dv_1/dy|_{y=0}$ shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton $dv_1/dy|_{y=0}$ changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

6 data tables match query

Directed flow for protons versus rapidity for central (0-10$\%$), intermediate-centrality (10-40$\%$) and peripheral (40-80$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

Directed flow for $\pi^{-}$ versus rapidity for central (0-10$\%$), intermediate-centrality (10-40$\%$) and peripheral (40-80$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

Directed flow for protons and anti-protons versus rapidity for intermediate-centrality (10-40$\%$) Au+Au collisions at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV. Errors are statistical only.

More…

Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

45 data tables match query

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

More…

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 051902, 2016.
Inspire Record 1332239 DOI 10.17182/hepdata.110967

New PHENIX measurements of the anisotropic flow coefficients $v_2\{\Psi_2\}$, $v_3\{\Psi_3\}$, $v_4\{\Psi_4\}$ and $v_4\{\Psi_2\}$ for identified particles ($\pi^{\pm}$, $K^{\pm}$, and $p+\bar{p}$) obtained relative to the event planes $\Psi_n$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.

40 data tables match query

Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

More…

$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.

13 data tables match query

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c

More…

Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 064904, 2014.
Inspire Record 1280745 DOI 10.17182/hepdata.96269

We report on the first measurement of the azimuthal anisotropy ($v_2$) of dielectrons ($e^{+}e^{-}$ pairs) at mid-rapidity from $\sqrt{s_{_{NN}}} = 200$ GeV Au+Au collisions with the STAR detector at RHIC, presented as a function of transverse momentum ($p_T$) for different invariant-mass regions. In the mass region $M_{ee}\!<1.1$ GeV/$c^2$ the dielectron $v_2$ measurements are found to be consistent with expectations from $\pi^{0}$, $\eta$, $\omega$ and $\phi$ decay contributions. In the mass region $1.1\!<M_{ee}\!<2.9$ GeV/$c^2$, the measured dielectron $v_2$ is consistent, within experimental uncertainties, with that from the $c\bar{c}$ contributions.

17 data tables match query

The dielectron $v_2$ in the $\pi^0$ Dalitz decay region as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Expected dielectron $v_2$ from $\pi^0$ Dalitz decay as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

The dielectron $v_2$ as a function of $p_T$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for the $\pi^0$ mass region.

More…

Dielectron Mass Spectra from Au+Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 022301, 2014.
Inspire Record 1275614 DOI 10.17182/hepdata.95663

We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($\rho$-like), 0.76-0.80 ($\omega$-like), and 0.98-1.05 ($\phi$-like) GeV/$c^{2}$. The spectrum in the $\omega$-like and $\phi$-like regions can be well described by the hadronic cocktail simulation. In the $\rho$-like region, however, the vacuum $\rho$ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77$\pm$0.11(stat.)$\pm$0.24(sys.)$\pm$0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the $\rho$ meson. The excess yield in the $\rho$-like region increases with the number of collision participants faster than the $\omega$ and $\phi$ yields. Theoretical models with broadened $\rho$ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.

11 data tables match query

Uncorrected Distributions of e+ e- invariant mass, the reconstructed background, and the signal pairs in 200 GeV Au+Au minimum bias collisions.

The ratio of signal to background in Au + Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV (Minimum Bias).

The ratio of signal to background in Au + Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV (Central).

More…

J/$\psi$ production at high transverse momenta in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 722 (2013) 55-62, 2013.
Inspire Record 1127499 DOI 10.17182/hepdata.98623

We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.

4 data tables match query

(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.

$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.

(Color online.) $J/\psi$ RAA versus pT for several centrality bins for Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The statistical (systematic) uncertainties are shown with vertical bars (open boxes). The filled boxes about unity on the right show the size of the normalization uncertainty. PHENIX low-$p_{T}$ $J/\psi$ results [6] and STAR high-$p_{T}$ results in Cu+Cu collisions [15] are shown for comparison. The curves are from the predictions by Model I (Liu et al.) [11] and Model II (Zhao et al.) [12].

More…