Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.
No description provided.
No description provided.
We report the analysis of the spatial energy distribution of data for e+e−→hadrons obtained with the MARK-J detector at PETRA. We define the quantity "oblateness" to describe the flat shape of the energy configuration and the three-jet structure which is unambiguously observed for the first time. Our data can be explained by quantum chromodynamic predictions for the production of quark-antiquark pairs accompanied by hard noncollinear gluons.
AVERAGE OBLATENESS AS A FUNCTION OF SQRT(S) AND OF THRUST AND OBLATENESS DISTRIBUTION (1/N)*DN/DOBLATENESS AT 17 AND 27.4 TO 31.6 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.
CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.
THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.