Date

Results on Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 510$ GeV with the STAR Detector at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 852 (2024) 138601, 2024.
Inspire Record 2704122 DOI 10.17182/hepdata.144920

We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.

2 data tables

Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.

Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.


Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 808 (2020) 135663, 2020.
Inspire Record 1791591 DOI 10.17182/hepdata.94263

We report results on the total and elastic cross sections in proton-proton collisions at $\sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 \leq -t \leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $d\sigma/dt \sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 \pm 0.09 (stat.)^{\scriptstyle +0.13}_{\scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $\sigma_{tot}$, obtained from extrapolation of the $d\sigma/dt$ to the optical point at $-t = 0$, is $\sigma_{tot} = 54.67 \pm 0.21 (stat.) ^{\scriptstyle +1.28}_{\scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $\sigma_{el} = 10.85 \pm 0.03 (stat.) ^{\scriptstyle +0.49}_{\scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $\sigma^{det}_{el} = 4.05 \pm 0.01 (stat.) ^{\scriptstyle+0.18}_{\scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $\sigma_{inel} = 43.82 \pm 0.21 (stat.) ^{\scriptstyle +1.37}_{\scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.

3 data tables

The proton-proton elastic differential cross-section $d\sigma_{el}/dt$ in the t-range 0.045<|t|<0.135 $GeV^{2}$ at sqrt(s) = 200 GeV.

The B-slope of the exponential fit A*exp(-B*|t|) to the single differential proton-proton elastic cross-section in the t-range 0.045<|t|<0.135 GeV**2 at sqrt(s) = 200 GeV.

The total, elastic and inelastic cross-sections for proton-proton scattering at sqrt(s)=200 GeV, the elastic cross-section measured in the t-range 0.045<|t|<0.135 GeV^2 and the value of the differential cross-section extrapolated to |t| = 0.


Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

79 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

The seven input variables to the NN ordered by their discriminating power. The jet that is not $b$-tagged is referred to as $\textit{untagged}~$jet.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…

K+ production in the reaction Ni-58 + Ni-58 at incident energies from 1-A-GeV to 2-A-GeV.

The FOPI collaboration Best, D ; Herrmann, N ; Hong, B ; et al.
Nucl.Phys.A 625 (1997) 307-324, 1997.
Inspire Record 441884 DOI 10.17182/hepdata.36288

Semi-inclusive triple differential multiplicity distributions of positively charged kaons have been measured over a wide range in rapidity and transverse mass for central collisions of $^{58}$Ni with $^{58}$Ni nuclei. The transverse mass ($m_t$) spectra have been studied as a function of rapidity at a beam energy 1.93 AGeV. The $m_t$ distributions of K^+ mesons are well described by a single Boltzmann-type function. The spectral slopes are similar to that of the protons indicating that rescattering plays a significant role in the propagation of the kaon. Multiplicity densities have been obtained as a function of rapidity by extrapolating the Boltzmann-type fits to the measured distributions over the remaining phase space. The total K^+ meson yield has been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented in comparison to existing data. The low total yield indicates that the K^+ meson can not be explained within a hadro-chemical equilibrium scenario, therefore indicating that the yield does remain sensitive to effects related to its production processes such as the equation of state of nuclear matter and/or modifications to the K^+ dispersion relation.

1 data table

No description provided.


Directed flow and particle production in Au + Au collisions from experiment E877 at the AGS

The E877 collaboration Barrette, Jean ; Barrette, J. ; Bellwied, R. ; et al.
Nucl.Phys.A 590 (1995) 259C-270C, 1995.
Inspire Record 407657 DOI 10.17182/hepdata.36511

None

1 data table

CENTRAL EVENTS: 10% OF SIG(GEOM).


Azimuthal asymmetry of neutral pion emission in Au + Au reactions at 1-GeV/u

Venema, L.B. ; Braak, H. ; Lohner, H. ; et al.
KVI-983, 1993.
Inspire Record 359163 DOI 10.17182/hepdata.30556

None

4 data tables

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF PI0 HAVE BEEN FITTED BY: D(N)/D(PHI)=N*(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLEOF PI0 RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). THE 17 PCT OF ALL NONPERIPHERAL EVENTS HAS BEEN REMOVED (SEE PAPER).

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF CHARGED PARTICLES HAVE BEEN FITTED BY : D(N)/D(PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THEAZIMUTHAL ANGLE OF CHARGED PARTICLE RELATIVE TO THE FOLLOWING COORDINATE SYSTEM : Z AXIS DIRECTED ALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTU M CONSTRUCTED FROM TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).

THE AZIMUTHAL ANGLE DISTRIBUTIONS OF NEUTRONS HAVE BEEN FITTED BY: D(N)/D (PHI)=N *(1+CONST(Q=1)*COS(PHI)+CONST(Q=2)*COS(2*PHI)), WHERE PHI IS THE AZIMUTHAL ANGLE OF NEUTRON RELATIVE TO THE FOLLOWING COORDINATE SYSTEM: Z AXIS DIRECTEDALONG BEAM MOMENTUM, X AXIS DIRECTED ALONG TRANSVERSE MOMENTUM CONSTRUCTED FRO M TRANSVERSE MOMENTA OF THE FINAL STATE PARTICLES (SEE PAPER). A systematic error of 0.03 has been estimated for CONST(Q=1) and CONST(Q= 2).

More…