The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,
Data taken during 1990.
Data taken during 1991.
Data taken during 1990.
The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.
Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.
Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.
From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
None
No description provided.
No description provided.
No description provided.
In the first holographic bubble chamber experiment — the HOBC experiment — we have accumulated a total of 40000 holograms with particle interactions. We have determined the total charm pair cross section inpN collisions to be 23.3−7.7+10 μb and 3.6−1.7+2.3 μb for 360 and 200 GeV/c incident protons respectively. We have assumed a linear dependence of the cross section on the atomic number of the target. This experiment has demonstrated the feasibility of holographic recording in small bubble chambers. Assuming that the charm cross section can be described by the standard QCD factorized expression with gluon fusion and quark-antiquark annihilation, we have used our measured charm cross sections with other measurements to determine the effective charmed quark mass to be 1.8−0.35+0.25 GeV/c2. TheK factor, which describes the importance of the higher order corrections, is calculated to be 9.8−6.9+12.5 (See noted added in proof.)
No description provided.
Charm-charm correlation properties are studied in detail for the first time using a sample of D D pairs produced in 360 GeV/ c π − p interactions. The data are compared with various models of charm production.
No description provided.
None
No description provided.
The inclusive cross sections for forward D meson production at s =26 GeV in π − p interactions have been measured to be: σ(π − p → D 0 / D 0 + X ) x F >0 = (10.1±2.2)μ b , σ(π − p → D ±+ X ) x F >0 = (5.7±1.6)μ b . The distribution in x F for all D and for x F >0 has the form d σ/ d x F =107 −37 +39 (1−x F ) 7.5 −1.7 +2.5 +5.4 −3.8 +6.0 (1−x F ) 0.7 −0.7 1.0 μ b , with evidence for leading D production. The p T 2 distribution is exponential with slope parameter [−1.18 −0.16 +0.18 ]( GeV / c) −2 . The data are compared with predictions from first-order quark/gluon fusion calculations.
No description provided.
No description provided.
No description provided.
A study of the properties of charm particles produced in 360 GeV/c π-p interactions is reported. The experiment was performed using the high resolution hydrogen bubble chamber LEBC in association with the European Hybrid Spectrometer at the CERN SPS. Details of the exposure and operation of the spectrometer are given and the methods used to extract the charm data are presented. The essential physics results on the decay properties (lifetime, branching ratios) as well as on the hadroproduction properties (cross sections forD,\(\bar D\),F, Λc,D, correlations between charm particles) are given.
No description provided.
No description provided.
Based on a sample of 22 four-prong D 0 / D 0 decays produced in hydrogen by 360 GeV/ c π − , we present the following new results: mean lifetime τ = (3.5 −0.9 +1.4 ) x 10 −13 s ; production cross section for x F > 0.0, σ = (10.3 ± 3.5) ωb ; the D → K ± π ± π + π − branching ratio = (7.1 ± 2.5)%.
No description provided.