We report new measurements of the inclusive electroproduction of forward protons carried out at the Wilson Synchrotron Laboratory at Cornell University. Data were taken with deuterium at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.15, 4.0), and (3.11, 1.2); data were taken with hydrogen at these points and at the points (2.15, 2.0), (2.67, 3.3), and (3.11, 1.7). The invariant structure function is presented in terms of W, Q2, and ω.
No description provided.
We report measurements of kaon electroproduction from hydrogen and deuterium targets carried out at the Wilson Synchrotron Laboratory at Cornell University. The reactions γVp→K+X0, K+Γ, and K+Σ0 were studied in the kinematic region 2.15≤W≤3.1 GeV and 1.2
FIRST 11 DATA POINTS ARE FROM THE PRESENT EXPERIMENT. THE NEXT 4 DATA POINTS ARE HARVARD-CORNELL DATA: BEBEK ET AL., PRL 32, 21 (1974). THE LAST 8 DATA POINTS ARE CEA DATA: BROWN ET AL., PRL 28, 1086 (1972).
No description provided.
We report measurements of the electroproduction of ϕ mesons from hydrogen at Q2 values of 0.23, 0.43, and 0.97 GeV2 with |t| varying from 0.125 to 1.3 GeV2 at each Q2 point. The data show no evidence for a Q2 dependence of the slope of the t distribution; the forward cross section falls with increasing Q2 as the square of the ϕ propagator; the decay angular distributions agree with the predictions of s-channel helicity conservation; and the ratio of the longitudinal to the transverse component increases linearly with Q2.
'DATA POINT ONE'.
'DATA POINT TWO'.
'DATA POINT THREE'. POOR STATISTICS - NOT IN PUBLISHED FIGURE.
We report measurements of the electroproduction of φ mesons from hydrogen at Q2 values of 0.23, 0.43, and 0.97 GeV2 with |t| varying from 0.125 to 1.3 GeV2 at each Q2 point. The data show no evidence for a Q2 dependence of the slope of the t distribution, the forward cross section falls with increasing Q2 as the square of the φ propagator, the decay angular distributions agree with the predictions of s-channel helicity conservation, and the ratio of the longitudinal to the transverse component increases linearly with Q2.
No description provided.
We report measurements of semi-inclusive pion electroproduction from both hydrogen and deuterium targets carried out at the Wilson Synchrotron Laboratory at Cornell University. Measurements were made at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.15, 4.0), and (3.11, 1.2) with hydrogen and deuterium, and at (2.15, 2.0), (2.67, 3.3), and (3.11, 1.7) with hydrogen only. The invariant virtual-photoproduction cross section for pions scaled by the total cross section is studied as a function of x′, pT2, W, and Q2. The invariant structure function shows no Q2 dependence and a weak W dependence. The ratio of π+ to π− production is also presented, but a distinction between a universal ω or W dependence cannot be made.
No description provided.
No description provided.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.