Date

Study of the $e^+ e^-\to\mu^+ \mu^- \gamma$ reaction at center-of-mass energies between 54 and 64 GeV

The VENUS collaboration Yonezawa, Y. ; Abe, K. ; Amako, K. ; et al.
Phys.Lett.B 264 (1991) 212-218, 1991.
Inspire Record 1389624 DOI 10.17182/hepdata.29359

The cross section and forward-backward muon charge asymmetry for the e + e − → μ + μ − γ reaction were measured to be σ =2.82±0.35 pb and A =−0.34±0.10 with the VENUS detector at TRISTAN at 〈√ s 〉=59.2GeV for an integrated luminosity of 53.5 pb −1 . The measured cross section agrees with the theoretical prediction. The asymmetry result is consistent with the electroweak prediction but not with the QED prediction at the level of 2 σ .

2 data tables

No description provided.

No description provided.


Kaonic disintegration of the deuteron near 400 MeV/c

Cline, D. ; Laumann, R. ; Mapp, J. ;
Phys.Lett.B 27 (1968) 110-112, 1968.
Inspire Record 1389657 DOI 10.17182/hepdata.29226

The processes K − d → Σ − p and K − d → Λn have been observed at K − momenta of 340 MeV/c and 400 MeV/c. The cross sections for these processes are: σ ( Σ − p) = 200 ± 30 μ b at 400 MeV/c, σ ( Λ n) = 200 ± 30 μ b at 400 MeV/c, σ ( Σ − p) = 300 ± 100 μ b at 340 MeV/c, σ ( Λ n) = 360 ± 150 μ b at 340 MeV/c.

1 data table

No description provided.


$K^+ n$ charge exchange reaction at 3 GeV/c

Goldschmidt-Clermont, Y. ; Henri, V.P. ; Jongejans, B. ; et al.
Phys.Lett.B 27 (1968) 602-604, 1968.
Inspire Record 1389631 DOI 10.17182/hepdata.29205

About 100 000 pictures, with an average of ∼12K + per picture, taken in the 81 cm Saclay deuterium bubble chamber exposed to a separated 3 GeV/c K + beam have been analysed for the reaction K + d→K 0 pp in the 1-prong V 0 and 2-prong V 0 topologies. 214 such events have been found allowing a determination of the differential cross-section. A comparison with the prediction of Rarita and Schwarzschild yields reasonable agreement; in particular a large real part is inferred for the amplitude for the reaction K + n→K 0 p.

2 data tables

The errors are statistical only.

The errors are statistical only. To evaluate the cross section on neutron thE data are divided on (1-FORMFACTOR(C=DEUT). For definition of the formfactor see L. Durand, Phys. Rev. 115 (1959) 1020.


Reaction cross sections for 65 MeV protons on targets from $^9$Be to $^{208}$Pb

Ingemarsson, A. ; Nyberg, J. ; Renberg, P.U. ; et al.
Nucl.Phys.A 653 (1999) 341-354, 1999.
Inspire Record 1389640 DOI 10.17182/hepdata.36231

Reaction cross sections for 65.5 MeV protons have been measured for 9 Be, 12 C, 16 O, 28 Si, 40 Ca, 58,60 Ni, 112.116.118.120.124 Sn, and 208 Pb. The results are compared with optical model predictions using relativistic global potentials.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Total cross-section for n-p and n-d scattering at 10 GeV/c neutron momentum

Engler, J. ; Horn, K. ; König, J. ; et al.
Phys.Lett.B 27 (1968) 599-601, 1968.
Inspire Record 1389110 DOI 10.17182/hepdata.752

The total neutron cross-sections were measured with high precision for hydrogen and deuterium. At an average neutron momentum of 10 GeV/c we obtained σ T (np)=39.5±0.5 mb and σ T (nd)=73.3±1.1 mb. These values are in excellent agreement with p-p and p-d total cross sections. No energy dependence was found for n-p cross section between 4 and 10 GeV/c.

3 data tables

No description provided.

No description provided.

No description provided.


Determination of the γ - π - ρ coupling constant from the −/+ ratio for photoproduction from deuterium

Pine, J. ; Bazin, M. ;
Phys.Lett. 5 (1963) 168-170, 1963.
Inspire Record 1388798 DOI 10.17182/hepdata.27961

None

3 data tables

No description provided.

No description provided.

No description provided.


Study of the reaction pi- p --> omega n at 3, 8, 6 and 8 GeV/c

Apel, W.D. ; Ausländer, J. ; Müller, H. ; et al.
Phys.Lett.B 55 (1975) 111-116, 1975.
Inspire Record 1388800 DOI 10.17182/hepdata.27881

Results are given for the production differential cross sections and the ω decay angular distribution in terms of the ω spin density matrix elements.

3 data tables

PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.

PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.

No description provided.


Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table

No description provided.


A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 092009, 2015.
Inspire Record 1388868 DOI 10.17182/hepdata.70787

We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

24 data tables

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMAX region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransMIN region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

Average charged particle multiplicity for charged particles with pT > 0.5 GeV and |eta| < 0.8 in the TransAVE region as defined by the leading charged particle, as a function of the transverse momentum of the leading charged-particle pTmax, at 1.96 TeV.

More…

Measurement of the charge asymmetry in top quark pair production in pp collisions at sqrt(s) = 8 TeV using a template method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 034014, 2016.
Inspire Record 1388178 DOI 10.17182/hepdata.69208

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

1 data table

The measured $t\bar{t}$ production asymmetry $A_c^y$.