None
'1'.
'2'. 'N1'. '3'.
The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.
Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).
None
No description provided.
No description provided.
No description provided.
The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.
No description provided.
No description provided.
No description provided.
The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.
'1'.
'2'.
'3'.
None
'1'. '2'. '3'.
No description provided.
No description provided.
The elastic scattering of K+ mesons on protons is studied at 3.5 and 5 GeV/c. The total elastic cross-sections are found to be (4.36±0.36) mb and (3.82±0.41) mb respectively. The differential elastic cross-sections, which exhibit characteristic diffraction peaks, are fitted by dσ/dt=(dσ/dt)0eαt, giving α=(3.85±0.12) and (4.70±0.21) (GeV/c)−2 for the two momenta respectively, with |t|⪝0.65 (GeV/c)2. The results are compared to those at neighbouring energies, giving some support to the presence of a real part of the forward scattering amplitude. The diffraction peak shows definite shrinking with increasing momenta. The data are examined in the light of models for high-energy scattering.
No description provided.
As a part of our program to study p−p collisions at Cosmotron energies, the differential cross sections for elastic scattering were measured at five laboratory angles between 2.3° and 17° for each incident energy. Total elastic cross sections obtained by integration are 21.4±1.4, 17.0±0.8, and 14.7±0.7 mb at 1.35, 2.1, and 2.9 BeV, respectively. The angular distribution as a function of the momentum transfer, exhibits a forward diffraction peak, the width of which shrinks slightly as the incident energy increases. The experimental results were fitted by simple optical model calculations and also compared with the predictions of the composite particle theory of Chew and Frautschi.
No description provided.
'1'.
'1'.
The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.
'1'.
No description provided.
No description provided.