Date

Observation of the Onset of Constituent Quark Number Scaling in Heavy-Ion Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 135 (2025) 072301, 2025.
Inspire Record 2907591 DOI 10.17182/hepdata.159489

Partonic collectivity is one of the necessary signatures for the formation of quark-gluon plasma in high-energy nuclear collisions. Number of constituent quarks (NCQ) scaling has been observed for hadron elliptic flow $v_2$ in top energy nuclear collisions at the Relativistic Heavy Ion Collider and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this Letter, a systematic analysis of $v_2$ of $π^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$, and $Λ$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at the Relativistic Heavy Ion Collider, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.

72 data tables

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV

More…

Measurement of Spin-Density Matrix Elements in $ϕ(1020)\to K_S^0K_L^0$ Photoproduction with a Linearly Polarized Photon Beam at $E_γ=8.2-8.8$ GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Rev.C 112 (2025) 025203, 2025.
Inspire Record 2907183 DOI 10.17182/hepdata.160000

We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.

1 data table

Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.


Light Nuclei Femtoscopy and Baryon Interactions in 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Lett.B 864 (2025) 139412, 2025.
Inspire Record 2837311 DOI 10.17182/hepdata.156057

We report the measurements of proton-deuteron ($p$-$d$) and deuteron-deuteron ($d$-$d$) correlation functions in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV using fixed-target mode with the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). For the first time, the source size ($R_{G}$), scattering length ($f_{0}$), and effective range ($d_{0}$) are extracted from the measured correlation functions with a simultaneous fit. The spin-averaged $f_0$ for $p$-$d$ and $d$-$d$ interactions are determined to be -5.28 $\pm$ 0.11(stat.) $\pm$ 0.82(syst.) fm and -2.62 $\pm$ 0.02(stat.) $\pm$ 0.24(syst.) fm, respectively. The measured $p$-$d$ interaction is consistent with theoretical calculations and low-energy scattering experiment results, demonstrating the feasibility of extracting interaction parameters using the femtoscopy technique. The reasonable agreement between the experimental data and the calculations from the transport model indicates that deuteron production in these collisions is primarily governed by nucleon coalescence.

3 data tables

Proton-Deuteron correlation function in 3 GeV Au+Au collisions.

Deuteron-Deuteron correlation function in 3 GeV Au+Au collisions.

Source size of p-d and d-d correlation function


Strangeness Production in $\sqrt{s_{\rm NN}}=3$ GeV Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
JHEP 10 (2024) 139, 2024.
Inspire Record 2807679 DOI 10.17182/hepdata.153884

We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.

19 data tables

dN/dy of lambda for different centrality bins.

dN/dy of Ks0 for different centrality bins.

Rapidity dependence of Lambda/p for different centrality bins.

More…

Version 2
Measurement of Spin-Density Matrix Elements in $\Delta^{++}(1232)$ photoproduction

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Lett.B 863 (2025) 139368, 2025.
Inspire Record 2799639 DOI 10.17182/hepdata.153414

We measure the spin-density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in the photoproduction reaction $\gamma p \to \pi^-\Delta^{++}(1232)$ with the GlueX experiment in Hall D at Jefferson Lab. The measurement uses a linearly--polarized photon beam with energies from $8.2$ to $8.8$~GeV and the statistical precision of the SDMEs exceeds the previous measurement by three orders of magnitude for the momentum transfer squared region below $1.4$ GeV$^2$. The data are sensitive to the previously undetermined relative sign between couplings in existing Regge-exchange models. Linear combinations of the extracted SDMEs allow for a decomposition into natural and unnatural--exchange amplitudes. We find that the unnatural exchange plays an important role in the low momentum transfer region.

2 data tables

Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.

Spin-density matrix elements for the photoproduction of $\Delta(1232)^{++}$ in the Gottfried-Jackson system. The first uncertainty is statistical, the second systematic.


Version 2
Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 109 (2024) 044914, 2024.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant $v_3$ signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

6 data tables

Event plane resolutions for calculating $v_3\{\Psi_1\}$ as a function of centrality from $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

$v_3\{\Psi_1\}$ vs. centrality for $\pi^+$, $\pi^-$, and protons using the event plane method in $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

$v_3\{\Psi_1\}$ vs. centrality for $K^+$, and $K^-$ using the event plane method in $\sqrt{s_{\textrm{NN}}}=3$ GeV Au+Au collisions at STAR.

More…

Version 2
Measurement of Spin-Density Matrix Elements in $\rho(770)$ Production with a Linearly Polarized Photon Beam at $E_\gamma = 8.2\,-\,8.8\,\text{GeV}$

The GlueX collaboration Adhikari, S. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 108 (2023) 055204, 2023.
Inspire Record 2660186 DOI 10.17182/hepdata.140672

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized $8.5\,\text{GeV}$ photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson $\rho$(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of $s$-channel helicity conservation at small squared four-momentum transfer $t$ and are able to extract the $t$-dependence of natural and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of natural-parity exchange over the full $t$ range. We also find that helicity amplitudes in which the helicity of the incident photon and the photoproduced $\rho(770)$ differ by two units are negligible for $-t<0.5\,\text{GeV}^{2}/c^{2}$.

2 data tables

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.


First Observation of Directed Flow of Hypernuclei $^3_{\Lambda}$H and $^4_{\Lambda}$H in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adams, Joseph ; et al.
Phys.Rev.Lett. 130 (2023) 212301, 2023.
Inspire Record 2605845 DOI 10.17182/hepdata.136028

We report here the first observation of directed flow ($v_1$) of the hypernuclei $^3_{\Lambda}$H and $^4_{\Lambda}$H in mid-central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV at RHIC. These data are taken as part of the beam energy scan program carried out by the STAR experiment. From 165 $\times$ 10$^{6}$ events in 5%-40% centrality, about 8400 $^3_{\Lambda}$H and 5200 $^4_{\Lambda}$H candidates are reconstructed through two- and three-body decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to that of light nuclei, it is found that the midrapidity $v_1$ slopes of $^3_{\Lambda}$H and $^4_{\Lambda}$H follow baryon number scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production in such collisions.

8 data tables

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

$\Lambda$ hyperon and hypernuclei directed flow $v_1$, shown as a function of rapidity, from the $\sqrt{s_{NN}}$ = 3 GeV 5-40% mid-central Au+Au collisions. In the case of $^{3}_{\Lambda}$H $v_1$, both two-body (dots) and three-body (triangles) decays are used. The linear terms of the fitting for $#Lambda$, $^{3}_{\Lambda}$H and $^{4}_{\Lambda}$H are shown as the yellow-red lines. The rapidity dependence of $v_1$ for $p$, $d$, $t$, $^3$He, and $^4$He are also shown as open markers (circles, diamonds, up-triangles, down-triangles and squares), and the linear terms of the fitting results are shown as dashed lines in the positive rapidity region.

More…

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 59 (2023) 80, 2023.
Inspire Record 2132332 DOI 10.17182/hepdata.152804

High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.

35 data tables

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The resolution $\Re_{n}$ of the first-order spectator event plane for flow coefficients of different orders $n$ as a function of the event centrality (Adamczewski-Musch:2020iio). The circles correspond to centrality intervals of $5 \%$ width and the squares to $10 \%$ width (curves are meant to guide the eye).

The flow coefficients $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ (from top to bottom panels) of protons, deuterons and tritons (from left to right panels) in semi-central ($20 - 30 \%$) Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV as a function of the centre-of-mass rapidity $y_{cm}$ in transverse momentum intervals of $50$ MeV$/c$ width. Systematic uncertainties are displayed as boxes. Lines are to guide the eye.

More…

Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

22 data tables

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $p$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $d$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The $p_{T}$ dependencies of $v_{1}$ within $-0.1<y<0$ for $t$ in 10-40% mid-central Au+Au collisions at 3 GeV.

More…